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Figure 3.2 Déjà vu [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.3 Passfaces [131]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.4 Story [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.5 Mapping from (a) DASJ to (b) Pass-Go. . . . . . . . . . . . . . 25

Figure 3.6 Blonder’s graphical password scheme [15]. . . . . . . . . . . . . . 26

Figure 3.7 Picture Password [71]. . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.8 V-Go by Passlogix [120]. . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.9 VisKey [139]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.10 Cued Click Points (CCP) [25]. . . . . . . . . . . . . . . . . . . . 29

Figure 3.11 Weinshall’s High-complexity Protocol [161]. . . . . . . . . . . . . 30

Figure 3.12 Images used by Dirik et al. [40]. . . . . . . . . . . . . . . . . . . 34

Figure 5.1 Illustrative relationship between Class D1 and D2. . . . . . . . . . 48

Figure 5.2 Example Class D1 DAS passwords containing the same components,

symmetric about different axes. . . . . . . . . . . . . . . . . . . 49

Figure 5.3 Class D1a reflection axes for the DAS scheme. . . . . . . . . . . . 50

Figure 5.4 Example of a Class D1b DAS drawing. . . . . . . . . . . . . . . . 51

Figure 5.5 Example Class D4 and D5 DAS passwords. . . . . . . . . . . . . 52

Figure 5.6 Illustrative relationship between SD1b
, SD1a , SD1 , and SD2 . . . . . 53

Figure 5.7 Size of DASJ space for passwords of at most X strokes. . . . . . . 55

Figure 5.8 Bit-size of DASJ graphical password space. . . . . . . . . . . . . 59

Figure 5.9 Axes considered. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.10 Drawing that is symmetric about a difficult to reference axis. . . . 61

ix



Figure 5.11 Example symmetric areas. . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.12 Example DASJ password in Class D1, but not drawn in symmetric

strokes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.13 Disjoint and Continuous Cases. . . . . . . . . . . . . . . . . . . 63

Figure 5.14 Different types of the closed case. . . . . . . . . . . . . . . . . . 65

Figure 5.15 The effect of grid size on bit-size of DASJ password space. . . . . 74

Figure 6.1 Illustrative relationship between Class C1, C2, and C3. . . . . . . 80

Figure 6.2 Example Class C3-DIAG password. . . . . . . . . . . . . . . . . 82

Figure 6.3 Illustration of our method of creating a CCP-list (best viewed elec-

tronically). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 6.4 Images used in field study. . . . . . . . . . . . . . . . . . . . . 96

Figure 6.5 Observed clustering (field study). Halo diameter is 5 times the num-

ber of underlying clicks. . . . . . . . . . . . . . . . . . . . . . . 98

Figure 6.6 CDF of SC2 for pool and cars. . . . . . . . . . . . . . . . . . . . 104

Figure 6.7 CDF of SC2 ∩ SC3 for pool. . . . . . . . . . . . . . . . . . . . . 107

Figure 6.8 CDF of SC2 ∩ SC3 for cars. . . . . . . . . . . . . . . . . . . . . 107

Figure 6.9 CDF for applying a Markov model to attack the PassPoints scheme. 113

Figure 6.10 The five most popular clusters and number of popular clusters. . . 114

Figure 6.11 Observed click-points from lab study. . . . . . . . . . . . . . . . 116

Figure 6.12 Correlation of lab study hot-spotting with image contrast. . . . . 119

Figure 6.13 Correlation of lab study hot-spotting with number of corners. . . . 119

Figure 6.14 Correlation of lab study hot-spotting with number of segments. . . 120

Figure 6.15 Security measures for each image (in bits). . . . . . . . . . . . . . 123

Figure 7.1 General concept of a pass-thought. . . . . . . . . . . . . . . . . . 134

Figure 7.2 BCI spelling device screen [10]. . . . . . . . . . . . . . . . . . . . 138

Figure 9.1 Subset of images used in the lab study. . . . . . . . . . . . . . . 184

x



Abstract

It is well-known that traditional text-based passwords are weak due to predictable

patterns in user choice. In response, other knowledge-based authentication schemes

such as graphical passwords have been proposed, motivated in part by our remarkably

better memory for pictures over words. We hypothesize that these schemes, when

allowing users free choice of their password, will suffer from similar weaknesses.

We examine and generalize existing methods for attacking knowledge-based schemes,

and apply these methods to two representative, previously unanalyzed, graphical pass-

word schemes: the “Draw-A-Secret” scheme of Jermyn et al. (1999), and the “Pass-

Points” scheme of Weidenbeck et al. (2005). We validate our hypothesis using data

collected from our own user studies, and from user studies by others, providing the

first attacks and effective security analyses for these two schemes. Our results natu-

rally lead to a set of recommendations that may help improve the effective security

of these particular schemes.

In light of these attacks, we propose a novel idea for user authentication we call

“pass-thoughts”, which may prove to have some unique properties to defend against

various attacks (but we do not prove this herein). We end with a discussion of other

considerations for user authentication schemes, a comparative analysis of existing

schemes, and a discussion to put the results of this thesis in context.
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Chapter 1

Introduction

1.1 Motivation

Traditional text-based passwords have a well known weakness; people tend to choose

passwords with predictable patterns that, unsurprisingly, correlate with what is easi-

est to remember. These patterns in user choice produce a marked reduction in entropy,

and thus the effective security that passwords provide.

In response to this bleak status quo of text-based passwords, many new knowledge-

based (or “what you know”) user authentication techniques have emerged that in

theory produce higher entropy user authentication. It is relatively straightforward

to determine the theoretical entropy where user choice is assumed to be uniform;

however, measuring the entropy when considering the predictability of user choice is

a more challenging task.

Accurately estimating the entropy of new user authentication schemes is an im-

portant step in measuring the security they provide. If a new scheme has low entropy

due to patterns in user choice, it may fall to attack. To avoid the compromise of

user accounts, it is important that any such security problems are understood prior

to widespread deployment.

1.2 Threat Model

When an authentication scheme has low entropy, it is susceptible to guessing attacks.

We focus on the threat of offline dictionary-based guessing attacks,1 where the attacker

is only limited by his or her time and computational resources. We assume that the

attacker has access to one or more hashed passwords or verifiable texts [56], which

may have been obtained by one of many ways discussed further below.

1However, one of the attacks we present for PassPoints (see Section 6.6) would be a threat in
both offline and online environments.

1
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Of course, knowledge-based user authentication schemes are also vulnerable to

other attacks, such as shoulder surfing, phishing, and social engineering attacks. Al-

though these other threats are real and themselves worthy of study, we focus on the

threat of dictionary-based guessing attacks, since many new schemes are argued to

be resistant. The threat of dictionary-based guessing attacks also has been shown to

remain for text passwords, despite proper implementation of the password policies

designed to thwart their success [167].

Guessing attacks are an increasing threat in today’s mobile environment. Mobile

devices can be lost or stolen, and once a device is in an attacker’s hands, he/she might

manually make guesses or override the regular input method for an online attack,

or copy the hashed password or encrypted check-word (and possibly other relevant

information) for an offline attack. If a device’s files are password-encrypted, a guessed

password equates with a compromise of private data. Guessing attacks are also a

threat to servers and desktop PCs, which normally store hashed passwords in a file

using a one-way hash (e.g., MD5 or SHA-1). One-way hashes are not reversible, and

thus offline recovery of the original password(s) requires hashing candidate guesses

for comparison against the file’s values. Insiders, or anyone with physical access

to computers hosting password files or backup tapes, can easily steal copies of the

password files required to launch an offline attack. Furthermore, operating system

vulnerabilities and related access control failures can lead to the inadvertent disclosure

of entire password databases.

1.3 Thesis Statement

We hypothesize other (non-text-based) types of knowledge-based user authentication

will also suffer from lowered entropy when based on user-chosen secrets. Lowered

entropy has already been demonstrated for a set of knowledge-based schemes: reg-

ular text passwords [77, 167, 82], passphrases [82], and recognition-based graphical

passwords [34]. We believe lowered entropy can also be shown for other previously

unanalyzed schemes by generalizing established attack methods, and applying this

generalization using information related to the particular scheme in question. This

hypothesis motivates the following questions:
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• Question 1: Can established attack strategies for some knowledge-based user

authentication methods (e.g., for text passwords, pass-phrases, and recognition-

based graphical passwords) be generalized?

• Question 2: How well do these strategies work against specific, previously un-

analyzed, representative schemes?

• Question 3: Can our knowledge lead us to other directions in user authentica-

tion that might be more immune to such attacks?

1.4 Thesis Overview and Organization

This thesis aims to answer Question 1 in Chapter 4 by generalizing methods of iden-

tifying and generating “weak password subspaces”. These weak password subspaces

roughly equate with guessing dictionaries. We call this generalization“predictive mod-

elling” [113], which gathers information related to the user task from other sources

(e.g., psychological studies, visual attention, and observing small sets of other users

in another context).

To answer Question 2, we create“candidate weak password subspaces” for two rep-

resentative, previously unanalyzed graphical password schemes: a pure-recall scheme

called “Draw-A-Secret” (DAS) by Jermyn et al. [72] in Chapter 5, and a cued recall

scheme called “PassPoints” by Weidenbeck et al. [164, 163, 162] in Chapter 6. Data

from both small-scale and large-scale user studies (both our own user studies and one

by Tao [146]) are used to determine whether these subspaces are indeed weak. We

showed that these subspaces are weak, thus adding two more schemes to the body

of literature supporting our hypothesis that other (non-text-based) knowledge-based

user authentication schemes are weak when based on user-chosen secrets. This result,

along with results by others [77, 167, 34, 82], suggests the emergence of a general pat-

tern that calls the effective security of any candidate knowledge-based authentication

scheme into question, when based solely on user-chosen secrets in environments where

offline attack is possible, and for some schemes, even where online attack is possible

(see Section 6.6).

In response to Question 3, in Chapter 7 we discuss some other user authentication
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schemes that are more immune to guessing attacks. Most of these other schemes un-

fortunately have limitations, leading us to propose a new type of non-static biometric

that we call “pass-thoughts” [153], which may prove to be more immune to the attack

methods known to date (but this is not proven herein).

Finally, to put the results of this thesis into context, we survey existing user

authentication schemes and their resistance to a set of attacks in Chapter 8, review

a set of other considerations for user authentication schemes, and discuss different

scenarios whereby some of these schemes may still be “secure enough”. Concluding

remarks are made in Section 8.5.2.

1.5 Main Contributions

Our main contributions include a generalized method for analyzing the security of

knowledge-based user authentication methods, and an illustration of how to apply this

method using two different graphical password schemes. We provide the first attacks

and effective security analyses of two representative graphical password schemes: a

pure-recall scheme called “Draw-A-Secret” (DAS) by Jermyn et al. [72], and a cued-

recall scheme called “PassPoints”by Weidenbeck et al. [164, 162, 163]. These effective

security analyses lead us to a set of specific recommendations to help improve the

security of these two schemes, and to outline existing and new ideas that might prove

to reduce the problem of predictable patterns in user choice. In our view, a lesson that

we can take away from these results is that graphical passwords are still immature,

and are just beginning to undergo serious analysis. We survey existing graphical

password schemes and their resistance to a set of attacks, within the context of the

larger body of user authentication methods. Finally, we outline a new proposal for

user authentication that may prove to have some interesting characteristics (but these

are not proven herein) that we call “pass-thoughts”.2

2Most of the work presented in this thesis has been published [113, 149, 150, 151, 153].



Chapter 2

Background

2.1 Introduction

User authentication is one of the first lines of defense for a computer system, the

method through which users prove that they are who they claim to be. As humans,

confirming the identity of a person we have met before is easy; we simultaneously

recognize many parts of a person, such as their physical appearance, voice, gait,

style of speech, clothing, and shared knowledge. However, it is not as easy for a

computer system to confirm such subtle factors. The most common form of user

authentication is shared knowledge in the form of traditional text-based passwords,

whereby a user enters a text string also known to the computer system. This form

of knowledge-based user authentication is popular due to its low cost, ease to im-

plement, and general familiarity amongst users. Unfortunately, text passwords have

many well-known limitations: they often have low entropy in practice (making them

susceptible to dictionary attacks; see Section 2.2.2), can be difficult to remember, and

are vulnerable to shoulder-surfing [136], social engineering (through verbal or written

communication) [95], phishing [39], and broader guessing attacks.

We focus on the threat of dictionary-based guessing attacks, further discussed in

Section 2.2. These attacks have been actively fought with password policies, proac-

tive checking, salting, stronger storage methods, and Automated Turing Tests (a.k.a.

CAPTCHAS), further discussed in Section 2.3. Despite these defensive measures,

guessing attacks remain a serious threat. Thus, many new schemes such as graphical

passwords [98] have been proposed as replacements for text passwords. We discuss

two graphical password schemes that are central to this thesis in Section 2.4.

5
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2.2 Guessing Attacks

Password guessing attacks can be launched by human attackers and malicious software

(e.g., the Morris Worm [143]). Such attacks can easily be launched by anyone due to

the widespread availability of free software1 to automate the process (e.g., John the

Ripper [115], Crack [103], and RainbowCrack [141]).

For security reasons, systems normally store their passwords as the output of

a one-way hash function (e.g., MD5 or SHA-1), and perform the same hash on a

user-supplied password for a direct comparison; if the hashes match, the password is

declared correct. Sometimes a salt is prepended to the password prior to hashing (see

Section 2.3.2). Storing hashed passwords prevents someone with access from simply

reading the password file. Since the one-way hash cannot be reversed, the only known

way to obtain the original password is to compare hashed password guesses.

The efficacy of a guessing attack is tightly related to the entropy offered by a

scheme. If users choose passwords that are either short enough to be guessed by brute-

force (see Section 2.2.1) or are predictable enough to be in an attacker’s dictionary (see

Section 2.2.2), they may be guessed by an attacker under certain, often achievable,

conditions.

These attacks are possible when an attacker is free to make as many guesses as

he wishes against a target password. When login servers do not lock the account

after a small number of tries (normally between three and ten), these attacks can

be performed online by making repeated login attempts. Alternatively, these at-

tacks could be performed offline, on an attacker’s machine given the hashed target

password. Hashed target passwords can be obtained through analysis of captured

network traffic (e.g., for Kerberos [167]), although this can be prevented by using

schemes such as Encrypted Key Exchange (EKE) [8] and Strong Password Expo-

nentiated Key Exchange (SPEKE) [68]. However, operating system vulnerabilities

[22] and related access control failures can lead to the inadvertent disclosure of en-

tire password databases. Furthermore, password databases can be stolen by insiders

with physical access to the device or login server by using a live CD2 (e.g., Knoppix

1Although in some cases, optimizations such as larger dictionaries are available for a small fee
(e.g., $28 USD for John the Ripper’s wordlists [115]).

2A live CD contains an operating system that will load directly from the CD, allowing someone
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[78]), or anyone with physical access to backup media (e.g., cleaning staff). In such

cases, the theft of hashed target passwords, and their subsequent compromise by a

correct guess through an offline guessing attack is difficult to detect, as the attacker

is providing perfectly valid proof of being a legitimate user.

The speed of offline guessing attacks is only limited by the attacker’s available

computing speed and disk space. Although these attacks have been known for years,

they are still quite successful. We detail how these attacks work, and various published

works reporting their success, in Sections 2.2.1 and 2.2.2.

2.2.1 Brute-Force Attacks

A brute-force attack attempts guessing all possible passwords until a successful match

is found. These attacks often order the search by first guessing passwords with simple

characteristics, such as those of a certain length or those composed of only lowercase

characters. The classic brute-force attack is only limited by the attacker’s computer

speed; however, rainbow tables and acoustic enhancements provide faster search times

as outlined below.

Rainbow Tables: A Time-Space Tradeoff

The time-space tradeoff in guessing attacks describes the time savings that can be

achieved by pre-computing and storing guesses with their hashed values: more pre-

computation saves time, but requires more space. The time-space tradeoff describes

finding an optimal amount of pre-computation such that an attack is feasible accord-

ing to the attacker’s resources. “Rainbow tables” [109] are the most recent optimiza-

tion to the time-space tradeoff.

Rainbow tables are based on the probabilistic idea of hashing chains, first described

by Hellman [62]. The basic idea of hashing chains is that a reduction function f is

used to make a pseudo-random walk through the entire (finite) space of passwords

P . The function f is applied to an initial hashed password guess H(x0), which then

with physical access to boot into an operating system other than that installed on the machine.
This effectively disables the protection for sensitive files that is particular to the installed operating
system, and an attacker with physical access to a machine can thus boot into the live CD to access
its files.
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converts it to another key (password); the hash and reduction functions are applied to

each key (repeated t times) to create a chain of keys and hashed keys (see Figure 2.1).

Tables of these chains are stored (only as the first and last key in each chain) to allow

fast password lookups. Only storing the first and last key in each chain significantly

reduces the required storage space. To find a password given its hash, the attacker

only needs to repeatedly apply the hash function, and then f , and compare each key

to the last key stored for each chain. Once a match is found, the entire chain can be

recreated from the first key stored, and the password should exist in the chain (with

high probability). Rainbow tables are an optimization to make chain merges within

the same table unlikely, by using a successive reduction function for each point in the

chain (see Figure 2.2). This optimization fixes the chain lengths (which are variable

in other hash chaining methods) and thus can reduce the search time by half (or

more). There is a time-memory tradeoff when defining the length of the hash chains

t, discussed in detail by Oechslin [109]. Previous hashing chain based methods used

cycle detection [62] or distinguished points [36], leading to potentially longer hash

chains.

Figure 2.1: Hash chain: a chain of t passwords (and hashed passwords) are created using
the reduction function f . Only x0 and the final hash are stored in the final table.

Figure 2.2: Rainbow table chain: a chain of t passwords (and hashed passwords) are created
using the reduction functions f1 to ft−1. Only x0 and xt are stored in the final table.

Rainbow tables have been implemented in a variety of freely available cracking

programs including RainbowCrack [141], Cain and Abel [101], and Ophcrack [108].

Precomputed tables are available online (currently only for Windows NTLM, and

MD5 passwords), most often for purchase (e.g., [129, 130]), but some are also free (e.g.,

through bittorrent from the Shmoo group [147]). Additionally, an MD5 Rainbow table



9

password cracking implementation is available online [119]; in only 40 minutes, it can

crack any password composed of 8 (or fewer) lower case characters and numbers. A

2007 large-scale study of user passwords [47] shows that the vast majority of passwords

contain only lower-case letters, 20% are only digits, 10-20% are alphanumeric, and

only a very small proportion contain special characters, indicating that this table

would have high success rates in practice.

Introduction of this search optimization (and its widespread availability) has dras-

tically reduced the amount of security we can expect from text passwords. Although

salting (see Section 2.3.2) prevents attacks from a single pre-computed rainbow table,

if the salt is too small (e.g., on the order of 12 bits), it is feasible for an attacker to

generate a separate table for each salt value.

Acoustic Enhancements

Acoustic emanations from keyboards can be recorded and analyzed to recover the

user’s typed text, including passwords. Zhuang et al. [170] use unlabeled data to

recover approximately 96% of individual characters, a substantial improvement over

previous work by Asonov et al. [2] that only achieved a success rate of 80% using

labeled data. The high success rates can create an ordering for a sequence of characters

that are likely to be a password (e.g., after entering a URL and feasible username),

for use in a guessing attack. They found that the ordering correctly guessed 90% of

5-character passwords in fewer than 20 guesses, and 80% of 10-character passwords

in fewer than 75 guesses.

Their attack only requires 10 minutes of recording a user on a specific keyboard,

and 30 minutes of computation (on a single Pentium IV 3.0GHz CPU with 1G mem-

ory), to obtain these high success rates. The attack groups different keystrokes ac-

cording to their sound, and then further classifies those sounds according to their

(language-specific) statistical frequencies and relationship to other letters. The shift,

control, backspace, and caps lock keys are not accounted for in their work.

Zhuang et al.’s results are alarming, as they reduce the number of password guesses
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to be within the reach of both offline and online guessing attacks that do not lock-

out accounts (see Section 2.3). Defenses against this attack include using a noise-

maker (e.g., playing music) while logging in, using a quiet keyboard, and/or increased

physical security to prevent acoustic recordings, which unfortunately are not possible

in all environments.

2.2.2 Dictionary Attacks

A dictionary attack is a guessing attack involving candidate guesses from a prioritized

list of “likely passwords”. The difference between a brute-force and dictionary attack

is that brute-force attacks exhaust the entire space, optionally with a crude ordering

where smaller subspaces are guessed first (e.g., shorter passwords), whereas a dictio-

nary attack only guesses passwords from a small subspace containing more probable

passwords. Freely available password guessing programs (e.g., John the Ripper [114])

often start with a dictionary attack, and if unsuccessful, they continue with a brute-

force attack. In Klein’s case study [77], 25% of 14000 user passwords were found in

a dictionary of only 3 × 106 words; the Morris Worm [143] used a dictionary of only

432 words in addition to the 1988 UNIX online dictionary (about 25000 words [144])

with remarkable success: some sites reported that 50% of passwords were correctly

guessed. More recent studies by Yan et al. [169] found that 33-35% of passwords were

guessed using a dictionary attack3 when no password rules are suggested or imple-

mented. This suggests that a password scheme’s security is linked more closely to the

size of its weak password subspaces than that of the full password space (which, e.g.,

for 8-character passwords of digits and mixed-case letters, is about 2 × 1014).

Some freely available programs also implement a “permutations” feature, whereby

the passwords in the dictionary are also varied (and then guessed) according to a set

of rules that can be modified by the attacker. Examples of permutations include sub-

stituting certain letters with numbers (e.g., “e” with “3”), changing lowercase letters

to uppercase, and appending a number or special character.

3No details are provided regarding which passwords were in the dictionary, its size, and the
computing resources required for completing the attack.
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Fast Dictionary Attacks: Rainbow Table Hybrids

The rainbow table attacks discussed in Section 2.2.1 did not take advantage of patterns

in user choice, but precomputed all possible passwords within a particular space (e.g.,

all passwords composed of 8 or fewer lowercase characters). Narayanan et al. [106]

present a method to combine a dictionary with a rainbow table such that all elements

in the key space are dictionary entries.

Their attack uses Markov models relating to letter distributions in the English

language, and they posit that phonetic similarity with words in the user’s native lan-

guage contributes to memorability. They also model use of non-alphabetic characters

with finite automata to apply the equivalent of permutation rules in most password

cracking programs (e.g., try a special character only at the end of the password).

Their ability to create a rainbow table from a dictionary depends on an algorithm to

efficiently enumerate the remaining password space that satisfies their Markov models

and finite automata.

Using a dictionary with 2 billion entries, they cracked 67.6% of passwords (from

a database of 150). A regular Rainbow table of the same size cracked 27.5% of

passwords from the same database. Use of their method produces faster and more

effective attacks, demonstrating the importance of using large salts to prevent such

pre-computation attacks.

2.3 Text Password Attack Defenses

A variety of defenses have been proposed in response to the attacks presented in Sec-

tion 2.2. Such defenses include ensuring that users choose “stronger” passwords (see

Section 2.3.1), and increasing the cost of each guess to an attacker (see Section 2.3.2).

Defenses that are particular to online password guessing are discussed in Section 2.3.3,

such as delaying the server’s response time, locking accounts after a number of in-

correct logins, and inhibiting automated guessing programs with Automated Turing

Tests (ATTs).
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2.3.1 Password Rules and Proactive Checking

Password Rules

Password rules are commonly guided by known password dictionaries. Such guide-

lines are normally communicated to users when creating or resetting a password. A

common password rule is “Your password must be at least 8 characters and include

at least one number and one uppercase character”.

Proactive Password Checking

Proactive password checking is the act of checking a password’s strength before it is

accepted by the system (as opposed to checking password’s strength after it has been

accepted). Proactive password checking programs verify that users are complying

with password rules, and that they are not choosing common “weak” passwords that

are contained in selected password dictionaries. Proposed implementations include

the use of Bloom filters [144], Markov models [33], decision trees [9], and algorithms

to check entropy-related password properties [168].

2.3.2 Password Salting and Adaptive-Cost Hashing

Salting

Password salting is a commonly used method that helps protect against pre-computation

of an offline attack dictionary. The concept of salting was first introduced for UNIX

passwords in 1979 [92, Note 10.2]. Salting stores a random value (e.g., 12 bits in

the case of UNIX passwords circa 1979) in the password file for each user, which is

appended to the user’s entered password prior to hashing. Thus, if an attacker is to

guess Alice’s password, he must first look up Alice’s salt value from the stolen pass-

word file, and append that value to each guess before hashing. For pre-computation

(e.g., rainbow tables) to work against a salted password, a set of tables must be cre-

ated for each possible salt value, increasing the time to compute the tables, and the

space required. Thus, it is important that a large enough salt value is used, such that

it is infeasible for most attackers to perform such precomputation.
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Adaptive-Cost

Adaptive-cost hashing algorithms allow system administrators to define how much

time it should take to hash a password for comparison, to slow down an attacker

making repeated guesses. Bcrypt [128] is one such adaptive-cost method, which is

implemented in FreeBSD. Bcrypt works by allowing system administrators to param-

eterize the computational complexity of the hashing algorithm itself, and thus of each

guess in an attack, so that its protection may adapt over time to increasing computer

speeds. Another adaptive-cost hashing algorithm for web passwords is presented by

Halderman et al. [59] that parameterizes the number of times a password is repeatedly

hashed. The idea of “key-stretching” by repeatedly hashing a password is attributed

to Kelsey et al. [75]. Halderman et al. use this concept in a two-step process for use

in a password manager for web passwords. The process is as follows: (1) compute

and cache an intermediate value V = fk1(username : password), then (2) compute

sitePassword = fk2(siteName : password : V ), where f is a hash function, and k1

and k2 represent the number of repeated hashes in each step. Having these two steps

allows caching of the intermediate hash V upon first use of their browser plugin, so

k1 can be much larger than k2, and the k1 delay in login time is not noticeable for

the legitimate user on their regular computing device(s).

A more recent proposal in this area is to introduce a “Halting Password Puzzle”

[18], which allows the user to specify the number of times that a password is hashed, by

specifying the amount of time they are willing to wait while the password is repeatedly

hashed. This method is particularly nice (although its usability remains to be studied)

as it defines the number of hashes as user-perceived elapsed time, and thus it naturally

scales with CPU speeds. This allows users to choose a weaker password that is easier

to remember for an infrequently used account, and add extra security by accepting a

longer login time. The algorithm will never finish hashing when an incorrect password

is entered, so the attacker must guess what is a reasonable upper bound of hashing

time, making this upper bound the new time for each guess. The usability of halting

password puzzles should be studied, as it is not obvious that users would understand

the relationship between the strength of their password and the amount of time they

wait before stopping the hashing. It seems that any implementation would require
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an interface that communicates this concept of a time-security tradeoff to users, but

any such interface would require user studies to ensure its usability and efficacy.

2.3.3 Online Defenses

Systems have slightly more control over the handling of online attacks; administra-

tors can introduce delays between incorrect login attempts to increase the time to

run a guessing attack, or completely lock an account after a number of incorrect

login attempts. However, account locking is not a viable solution in certain environ-

ments such as online auctions where denial-of-service (DOS) attacks are a concern, or

when the hosting company cannot afford customer service costs for resetting locked

accounts. Also, inducing a delayed response from the server cannot protect against

global attacks, where the attacker is trying all (or many) accounts on a system in par-

allel, which means the attacker does not suffer the latency penalty. These problems

motivate the proposal of using Automated Turing Tests to increase the difficulty of

an online automated guessing attack (further discussed below).

Automated Turing Tests (ATTs)

Pinkas and Sander [125] first introduced the idea of using ATTs (a.k.a. CAPTCHAs

[158]) to increase the cost of online guessing attacks. ATTs are computations that

are easy for humans, difficult for computers to solve, and should be difficult to guess

correctly. Commonly, ATTs are images of words distorted such that it is difficult

for optical character recognition (and other specialized) software to process correctly,

but easy for most human users to read. The Pinkas-Sander protocol requires that

users answer an ATT after entering a correct username/password at least once on a

particular machine (after which a cookie is set, allowing a number of logins without

an ATT). When the user (or attacker) enters an incorrect username/password pair,

he will be asked to answer an ATT with probability 0 < p ≤ 1, and denied access

regardless of the answer. With probability 1 − p, access is denied immediately. The

decision to ask an ATT for a given username/password pair must be deterministic

to ensure a certain number of ATTs will be asked to complete an online dictionary

attack, thus forcing human involvement.
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Van Oorschot and Stubblebine [111] propose further enhancements to the Pinkas-

Sander protocol to increase its security and usability. They make use of failed-login

counts (parameterized for a particular user) such that legitimate users will rarely need

to answer an ATT when no cookie is present. Thus, a travelling user in an Internet

café, who has rarely provided an incorrect password, does not need to answer an ATT,

with negligible cost to security. They also make use of failed-login counts to increase

the cost of an attack; when a certain failed login threshold has been exceeded, all

incorrect guesses require an ATT.

2.4 Graphical Passwords

Graphical passwords require that users remember pictures, and/or information related

to a picture, in lieu of a word. Motivated in part by people’s well-known ability to

remember images better than words, they have been hypothesized to have higher

entropy than text passwords, and thus provide better security. Many variations of

graphical password exist; those that will be referenced extensively in Chapters 5 and

6 are described below. Other graphical password schemes are described further in

Chapter 3, and are compared in Chapter 8.

2.4.1 Draw-A-Secret: A Pure-Recall Scheme

“Draw-A-Secret” (DAS) by Jermyn et al. [72] requires that a user recall and reproduce

a drawing (using a stylus our mouse) on a presented grid, as illustrated in Figure 2.3.

DAS encompasses both a general idea – user drawings as passwords – and a specific

grid-based method to implement that idea (i.e., the encoding that maps a user drawing

into an exactly repeatable password) [72, 97]. To distinguish these concepts, we will

refer to the specific encoding scheme of Jermyn et al. as DASJ , and hereafter reserve

the term DAS for the general idea. DASJ decouples the position of password input

from the temporal order, producing a larger password space than text-based password

schemes constrained by keyboard input (where the order in which characters are typed

predetermines their position).

A DAS password is simply a picture drawn on a G × G grid. Each grid cell is

denoted by two-dimensional coordinates (x, y) ∈ [1 . . . G] × [1 . . . G]. For DASJ , an
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Figure 2.3: DAS: users draw a password on a presented grid.

encoded password is a sequence of coordinate pairs listing the cells through which the

drawing passes, in the order in which it passes through them. Each time the pen is

lifted from the grid surface, this “pen-up” event is represented by the distinguished

coordinate pair (G+1, G+1). Two drawings having the same encoding (i.e., crossing

the same sequence of grid cells with pen-up events in the same places in the sequence)

are considered equivalent.4 Drawings are divided into equivalence classes in this

manner.

We reuse the following terminology.

• The neighbors N(x,y) of cell (x, y) are (x−1, y), (x+1, y), (x, y−1) and (x, y+1).

• A stroke is a sequence of cells {ci}, in which ci ∈ Nci−1
and which is void of a

pen-up.

• A DASJ password is a sequence of strokes separated by pen-ups.

• The length of a stroke is the number of coordinate pairs it contains.

• The length of a DASJ password is the sum of the lengths of its strokes (excluding

pen-ups).

Jermyn et al. [72] recursively compute the (full) password space size, i.e., the

number of distinct encoded graphical passwords in DASJ . This gives an upper bound

4This implies a many-to-one mapping of user drawings to encoded DASJ passwords.
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on the size of the password space and thus on the security of the scheme. It is assumed

that all passwords of total length greater than some fixed value have probability zero.

They compute the full password space size for passwords of total length at most

Lmax. For Lmax = 12 and a 5 × 5 grid, the size of the full password space is 258,

exceeding the number of text-based passwords of 8 characters or fewer constructed

from the printable ASCII codes (
∑8

i=1 95i < 253). It is this large full password space

that makes DASJ particularly interesting for further analysis.

2.4.2 PassPoints: A Cued-Recall Scheme

PassPoints is a click-based graphical password scheme, based on a single background

image (see Figure 2.4). The user chooses a password by clicking on an ordered se-

quence of 5 points on the background image, and logs in by clicking that same se-

quence of points again (where each click must be within some predefined amount of

error from its counterpart within the original set of click-points). The user’s recall

is cued by presenting the background image on which they enter their click-points.

Birget et al. [13] originally proposed a method called “robust discretization” to enable

secure storage of PassPoints passwords as a one-way hash, while permitting some

amount of error. Allowing some amount of error is necessary for PassPoints, as it

would be extremely difficult (if not impossible) for a user to click on the exact same

pixels during subsequent logins.

Figure 2.4: PassPoints: A user chooses an ordered sequence of 5 points on a single back-
ground image.
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We use the following terminology. Assume a user chooses a given click-point c

as part of their password. The tolerable error or tolerance t is the error allowed

for a click-point entered on a subsequent login to be accepted as c. This defines a

tolerance region (T-region) centered on c, which for example using t = 9 pixels (in

both vertical and horizontal directions) is a 19 × 19 pixel square. A cluster is a set

of one or more click-points that lie within a T-region. The number of click-points

belonging to a cluster is its size. A hot-spot is defined as an area that users choose

with higher probability (than if all points were equi-probable), and is thus measured

by user choice, as opposed to a hypothesized location on the image. A hot-spot is

thus indicated by a cluster observed (from a number of user password selections) to

be larger than would be expected given random selection with the same sample size.

An alphabet is a set of distinct T-regions. Both our own (in this thesis) and earlier

PassPoints studies [164, 163, 162] use 451×331 pixel background images; using 19×19

pixel T-regions produces an alphabet of size m = 414. Using passwords composed

of 5-clicks, on an alphabet of size 414, provides the system with only a 43-bit full

password space (however this could be increased by increasing the image size); we

discuss the implications of this in Chapter 6. In practice however, as we will show,

the effective password space is smaller as users choose hot-spots as click-points and/or

have predictable dependencies between their click-points.

The theoretical security of PassPoints depends on its alphabet size, and the num-

ber of click-points. The alphabet size depends on the image size and error tolerance

used. Weidenbeck et al. [163] found that users could successfully re-enter their points

with a 20×20 pixel error tolerance, and a 14×14 error tolerance, but not as well with

a 10 × 10 error tolerance. Chiasson et al. [24] later found that most users re-entered

their passwords within a 9 × 9 pixel T-region. The security effect (in practice when

considering user choice) of using a larger image is unknown.

PassPoints’ usability was originally studied by Weidenbeck et al. [164, 163, 162],

and further by Chiasson et al. [24]. These findings show that PassPoints have usability

competitive with regular text passwords, making it of interest for further analysis.
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2.5 Summary

User authentication is an important part of computer security. Unfortunately, ubiqui-

tous text passwords are susceptible to guessing attacks. Countermeasures have been

proposed, but have a limited impact when users choose weak passwords. Graphical

passwords have been presented as an alternative; the goal of these methods to date

has been to increase the size of the effective password space, while retaining usability.

The two particular schemes discussed in this Chapter (DAS and PassPoints) are the

subjects of the attacks and security analyses performed in the body of this thesis.

Chapter 3 discusses other related knowledge-based schemes and attack methods that

are not required background for this thesis.



Chapter 3

Related Work

3.1 Introduction

Many alternatives to text-based passwords have been proposed to date; Section 3.2

reviews other knowledge-based schemes that were not covered in Chapter 2. Some of

these methods have been shown to be vulnerable to attack, as discussed in Section

3.3. Other schemes that do not require the user to remember anything have also been

proposed (e.g., biometrics and physical tokens); however, we do not focus on these

schemes in this chapter.

3.2 Other Knowledge-based Schemes

Generally, the common goal of alternative knowledge-based schemes is to increase

memorability, and thus usability and effective security. We group these schemes

into mnemonic text password strategies in Section 3.2.1, and graphical passwords in

Section 3.2.2.

3.2.1 Mnemonic Text Password Strategies

Passphrases

Passphrases are a strategy suggested to users to aid in the creation of strong pass-

words. A typical passphrase is created by asking the user to think of a phrase such

as “My dog Spot is 7 years old!”, and using that phrase to create a password by using

the first character of each word, including any numbers or special characters. The

aforementioned example phrase would thus create the password “MdSi7yo!”. This

method is suggested as it creates passwords that are not typically in conventional

password dictionaries (as they are not based on a single word), yet are easy for people

to remember.

20
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Yan et al. [169] performed a study to verify that using passphrases did result in

passwords that are both secure (as measured by resistance to their attack methods)

and memorable. They performed a study involving 288 first year science students

from Cambridge University, by dividing them into three groups: control, random,

and passphrase. After one month, Yan et al. [169] took a snapshot of the password

file, and ran a dictionary attack with permutations (recall Section 2.2.2) and user-

specific information, and a brute-force attack on all 1-6 character passwords. They

ran these attacks against each experimental group, plus another comparison group of

100 students who did not receive any instructions. Using this attack, they were able

to guess the passwords of 33% of the control group, 35% of the comparison group,

8% of the random group, and 6% of the passphrase group. This finding supports that

using passphrases produces passwords that are less susceptible to dictionary attack

(although Kuo et al. [82] later found otherwise, see Section 3.3.2). They also found

that passphrases had similar memorability to regular passwords; on average, students

in the passphrase and control groups felt their passwords were easier to remember,

and kept written copies of their passwords for less than one week, as opposed to

almost five weeks for the random password group.

Picture Cues

Stubblefield et al. [145] propose inkblot authentication, whereby the user is shown

“inkblots” to cue their memory. Inkblots are random-looking images, created by

blotting pen ink on a piece of paper and folding it (e.g., see Figure 3.1). The use of

inkblots is motivated by the Rorschach inkblot tests, which asks the subject to tell

the examiner what he or she “sees” in the inkblot; their responses are evaluated to

characterize the personality of the subject. Passwords are created using inkblots by

asking the user to create an association for each inkblot, and then type the first and

last letters of the association. Thus, a set of 10 inkblot cues produces a 20-character

long password.

A preliminary user study [145], involving both Rorschach and computer-generated

inkblots, found that memorability for these associations was good after one day and

again after one week. A frequency analysis was performed on the data, finding that
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Figure 3.1: Inkblot authentication [145]: user is cued by a sequence of inkblots to remember
the characters of their password.

each character provided just under 3 bits of entropy; thus, a set of 10 inkblot cues

produces a password with about 59 bits of entropy (since each inkblot has two associ-

ated characters). They also performed a frequency analysis of the characters, finding

them quite similar to the English language. Finally, they found that by guessing

associations from most to least probable, it took 5 million guesses before the first blot

was guessed. Unfortunately, they did not provide more information about the success

rate from continuing the attack for a longer time.

3.2.2 Other Graphical Password Schemes

Recognition-Based Schemes

In this section we review several recognition-based schemes. As mentioned by Davis

et al. [34], all of the schemes below have small full password spaces, and are thus

vulnerable to offline attacks. Thus, these schemes are only secure for systems im-

plemented in environments that are presumably safe from offline attack (e.g., ATM

machines).

Déjà Vu Déjà vu [38] is based on a user recognizing 5 pictures out of a single

challenge set of 25 presented in a panel (see Figure 3.2). The system challenges

the user with a single panel during a login session. The 100 images from which
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users choose their 5 during enrollment are generated by random art, which is seeded

with an 8-byte number. The 100 images are then hand-picked such that they are

distinguishable from one another (about 70% of all generated were considered to have

sufficient quality for the scheme) .

Figure 3.2: Déjà vu [38]: user selects five images.

Dhamija et al. [38] did a user study involving 20 participants to determine the

difference between 4 digit PINs, 6-character passwords (never used before), and image

portfolio schemes (one based on photos, the other based on random art). Few users of

the 20 chose the same random art image, although 9 out of 20 chose the Golden Gate

bridge out of the photograph scheme. This implies attraction to random art is much

more randomly distributed, and thus shows more promise for security than other

recognition schemes; however, a larger sample size would be necessary to strengthen

this conclusion.

Passfaces Passfaces [131] requires that a user select a set of human faces to re-

member. The scheme is motivated by the assumption that humans have an excep-

tional ability to recall human faces [132]. To login, the user is presented a panel of

nine images, containing eight decoy faces, and one face from the user’s password.

The user must correctly select their password face from the presented panel; a total

of four panels are presented for a single login session. User studies performed on

Passfaces found that login success rates were higher than text passwords [20], and
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that a modified version (called “Faces”) had higher login success rates than the Story

scheme [34].

Figure 3.3: Passfaces [131].

Story Examined by Davis et al. [34], Story presents the user a panel of nine images

on a 3× 3 grid (see Figure 3.4), and asks the user to select one image on each of four

panels presented. The images presented belong to different categories, such as men,

women, children, food, animals, etc. A mnemonic strategy is suggested to create a

story from the pictures chosen. However, the authors found that this scheme was

not as memorable as their version of Passfaces, possibly since many subjects did not

actually base their password on a story (as revealed by a closing questionnaire).

Figure 3.4: Story [34].
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Other Pure Recall Schemes

Pass-Go In terms of the user drawing, Pass-Go [146] may be viewed as an imple-

mentation of DAS, wherein the feedback to the user is normalized to better reflect the

underlying encoding. To compensate for the rigidity of this normalization, Pass-Go

allows for strokes to also connect to diagonal neighbors. The user drawing is normal-

ized to points on cell corners, as opposed to DASJ ’s normalizing to points on grid cell

centers. This implementation design arguably addresses the potential repeatability

issue in DASJ when users draw passwords that are too close to grid lines and corners.

1,1

5,5

1,2 1,3

1,2 1,31,1

5,5

(b) Pass−Go−5(a) DAS   on a 5x5 gridJ

Figure 3.5: Mapping from (a) DASJ to (b) Pass-Go.

There is a one-to-one mapping between the corners of a Pass-Go-5 grid and the

cells of a 5× 5 DAS grid as shown in Figure 3.5. The difference is in what strokes are

valid; DASJ permits strokes between horizontal and vertical neighbors, whereas Pass-

Go also permits strokes between diagonal neighbors. Thus in Pass-Go every point

has up to 8 neighbors versus at most 4 in DASJ . This results in a full password space

increase of approximately one bit when the maximum password length is 12. The

reason for this surprisingly small increase is that the password space is dominated by

all permutations of length-1 strokes (which do not connect to any neighbors).1

1Through enumerations of the Pass-Go space under different stroke-length conditions, we found
this difference is more noticeable in the space of passwords without any length-1 strokes; here there
is an increase of 6.2 bits for a maximum password length of 12 over original 5 × 5 DASJ .
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Other Cued Recall Schemes

Blonder’s Scheme Blonder [15] patented a “graphical password” that requires

users to click an ordered sequence of predefined image areas (tap regions; see Fig-

ure 3.6). The password space of this scheme doesn’t leverage all of the available areas

of the background image; only a small number of tap regions are available for a user

to choose from.

Figure 3.6: Blonder’s graphical password scheme [15].

Picture Password Jansen et al. [71] proposed a graphical password scheme in-

tended for PDAs, that requires users to click an ordered sequence of visible squares

on a background image (see Figure 3.7). The visible squares are the result of placing

a grid over the entire image, which provides the user with an understanding of how

to repeat their click-points in subsequent logins. To increase the alphabet size (and

thus the full password space), they propose allowing two different actions: selecting a

grid square, and selecting a pair of grid squares (e.g., by a drag and drop operation).

The grouping of a pair of grid squares does increase the alphabet size and thus the

theoretical security, but at a cost to usability, as there are more operations for the

user to enter, which would require more time to enter (and there are more pieces of

information for the user to recall).



27

Figure 3.7: Picture Password [71].

V-Go Created by Passlogix [120], this scheme allows users to create passwords by

clicking on objects in a picture in the correct sequence, such as entering the time on

a clock, drawing cards from a card deck, or selecting ingredients for a meal or drink.

This scheme is unlikely to have a large password space, as there are a limited number

of things the user can select, and it encourages patterns in user choice (e.g. all aces

in a deck). It appears this scheme may have been abandoned by Passlogix; the only

place their website now discusses graphical passwords are in old press releases.

Figure 3.8: V-Go by Passlogix [120].

VisKey VisKey is a commercial graphical password product, marketed for the

Pocket PC [139]. It appears quite similar to PassPoints, as users are permitted to
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click anywhere, and can set their own error tolerance. The images can be defined by

the user, but unfortunately no advice is given to users on choosing a good image or

password (for example, see Figure 3.9).

Figure 3.9: VisKey: the demo password is (clockwise, starting at the lower left) the nose
of the three dolphins. [139].

Cued Click Points (CCP) Chiasson et al. [25] propose this variant, where instead

of clicking on five points on a single image as in PassPoints, the user clicks on a single

point on each of five images (see Figure 3.10). The general idea is that each image

(after the first) is dependent on the previous click-point. The attacker can obtain the

first image in the sequence “for free” by entering the username, but not the following

four images. This scheme has a similar full password space to PassPoints, but may

prove more difficult to attack as it increases the work for an attacker to obtain the

background images for analysis (a pre-requisite for the attacks we present herein

for PassPoints in Chapter 6). The effect of hot-spotting and dependencies between

click-points may lead to an attacker guessing all 5 points, but the efficacy of such a

directed attack has not yet been examined. A preliminary analysis of this scheme

[23] has shown that images have hot-spotting similar to that found for PassPoints

in a comparable lab setting. In this same technical report, Chiasson et al. [23] show

that using a persuasive method helps reduce this hot-spotting in a single-session lab

setting.
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Figure 3.10: Cued Click Points (CCP) [25].

Challenge Response Schemes

Some schemes are a combination of the user remembering a shared secret, and being

required to compute something based on a challenge provided by the login server (or

device). The motivation for such schemes is that they do not reveal the shared secret

in an untrusted environment (e.g., where shoulder surfing might be possible). The

user’s computed response to the challenge provided by the login server is a proof that

they remember the shared secret. One such method called cognitive trapdoor games

was proposed by Roth et al. [136] for PIN numbers. Other (less usable) examples

include those proposed by Hopper et al. [63] and Li et al. [85].

Here we outline one such challenge-response scheme involving images.

Weinshall’s Protocols Weinshall [161] proposes a “high-complexity” and a “low-

complexity” protocol, based on a shared secret set of pictures, and human cognitive

abilities. In general, N pictures comprise the set of possible shared secrets. In a given

login session, B pictures are shown. The secret picture set is F ⊂ B, of size M < N .

Login consists of a set of challenge-response rounds, where in each round, the user

must answer a question based on knowledge of the subset F .

In the high-complexity protocol, the user is shown a grid of images (see Figure

3.11) and computes a path from the top-left to the lower-right, based on moving

downward at the images in F , and to the right at the images not in F . The user

enters the number at the exit point of the panel (either on bottom or right edge). A
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user is presented with n < N pictures randomly selected from B, in the form of a

rectangular panel. Weinshall suggests using 11 rounds, with N = 80, M = 30, and

n = N .

Figure 3.11: High-complexity Protocol: users compute a path through the grid based on a
shared secret set of images [161].

In the low-complexity protocol, the user is shown a grid of 20 images, with a

random bit beside each. The user is then asked queries about the numbers beside their

secret images on the grid, such as “What is the majority value of the bits associated

with the first, second, and last images?”. Weinshall suggests using 22 rounds, with

N = 240, M = 60, and n = 20.

Both of these protocols have usability drawbacks: the user must be able to recog-

nize a large number of images, an extensive training period is required (2-3 sessions

in a secure location where feedback is provided), and login times are quite long (3

minutes for the high-complexity query, and 1.5 minutes for the low-complexity query).

Furthermore, a quite severe attack was found by Golle et al. [55] (see Section 3.3.5)

that is possible after observing a number of login sessions.
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3.3 Established Attack Methods for Knowledge-based Schemes

3.3.1 Text Passwords

There is a large body of work demonstrating how easily text passwords are guessed,

dating from Klein’s 1995 study [77] until 2006 in work by Kuo et al. [82].

Using a dictionary attack, Klein [77] showed that 25% of over 13,797 user pass-

words were guessed in 12 DECstation 3100 CPU months, but further that 21% were

guessed in 1 week, and 2.7% in the first 15 minutes. Although these times are surely

different from now (due to increased computer speeds), the dictionary success rates

may be similar. He also notes that on an average system with 50 accounts, one could

expect (using similar computing resources) one account to be cracked in under 2 min-

utes, and 5-15 accounts to be cracked in the first day. His attack dictionary was

62,727 words, composed of 130 variations of name and account name (of the target

user account), words from dictionaries such as names and places, vulgar phrases, and

Chinese language passwords (single and double syllables in Pinyin Romanization).

Various permutations (such as substituting numbers, pluralizations, and adding suf-

fixes) were applied to this dictionary.

Wu [167] further examined the issue of dictionary attack in text passwords in

the context of Kerberos. The most interesting part of his study is that the accounts

examined were subject to password policies, so it examines how well such policies

prevent attacks. There were 25,000 user accounts in this study, 2045 (8.2%) of which

were cracked in 100 million guesses. He performed a dictionary attack using a publicly

available password cracker, with site-specific information added to the dictionaries.

Although his results are not as dramatic as Klein’s, they demonstrate that password

policies are not a silver bullet in preventing dictionary attack. Wu’s conclusion was

that dictionary attacks were best avoided by cryptography instead of administrative

policy.

Kuo et al. [82] examined the efficacy of using John the Ripper [114] with permu-

tations (recall Section 2.2.2) against a database of 146 passwords. The attack guessed

6% of user passwords with a 1.2 million-entry dictionary without permutations, and
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another 5% by adding the permutations, stopping after 72 hours. This attack demon-

strated that user choices have similar entropy to those chosen 8 years ago in Wu’s

study.

St. Clair et al. [26] performed a distributed attack against 3500 passwords used

at Pennsylvania State University’s Computer Science and Engineering department.

They found that, using John the Ripper with 20 dual-core processors, they were able

to guess 25% of user passwords in 2 hours, and almost 34% in 5 days. Interestingly,

they found that only 10% of passwords were found using a dictionary, and the others

were found using John the Ripper’s intelligent brute force method (which uses fre-

quency tables). Their dictionary attack result is similar to the findings of Kuo et al.

[82], although they do not specify which dictionary was used.

3.3.2 Passphrases

Kuo et al. [82] also examined the feasibility of guessing passwords created with

passphrases, a mnemonic strategy found by Yan et al. [169] (see Section 3.2.1) to

result in passwords that are both difficult to guess, and easy to remember. Kuo et

al. hypothesized that users will choose passphrases based on advertising slogans, chil-

dren’s nursery rhymes or songs, movie quotes, famous quotations, song lyrics, and

television theme song lyrics. They created a 400,000-entry dictionary of passphrase-

generated passwords, including permutations (e.g., a 4 in place of the word “four”),

and applied it to a database of 144 passwords that were created under the suggestion

to use a passphrase as a mnemonic. They successfully guessed 4% of these passwords

with this dictionary, showing that although they are more resistant than regular text

passwords to such attacks, they should not be considered a panacea. They also found

that the most common sources to base passphrases upon are music and literature,

followed by movies and television shows. It is feasible that their dictionary could be

optimized by the addition of more passphrases, particularly using phrases that are

freely available (and harvestable) on the Internet, since 65% of the phrases used were

found to be available on the Internet.
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3.3.3 Recognition-Based Graphical Passwords

Davis et al. [34] examine the impact of user choice in two recognition-based graphical

password schemes: Faces (their implementation of Passfaces), and Story.

Their hypothesis was that, because people (across cultures) agree on beauty and

are better able to recognize faces of people from their own race, people will tend to

choose attractive faces and faces that are members of their own race in graphical

passwords. That this might be the case was previously noted by Dhajma et al. [38].

They further hypothesize that users will choose their pictures based on a dependent

probability: each picture depends on the one selected in the previous panel. They

designed their study to verify their hypothesis by ensuring each panel had at least 9 (of

12) different groups, divided into 3 races, 2 genders, and 2 levels of “attractiveness”.

The “attractive” images were of models, and the other images were of “typical” faces.

Their study was of 154 students using the system to access homework, grades,

course materials, etc.They generated an ordering of these graphical passwords, based

on dependent probabilities from the individual images from 80% of their user pass-

words. They applied this ordering (from most to least probable) to the other 20%

of users, finding that it lead to successful guessing attacks. Most notable is that

for Faces, they found they could guess 10% of male user’s passwords in two guesses,

making the scheme vulnerable to online attack even when account locking is enabled.

For Story, they found that they could guess 10% of all user’s passwords within 35

guesses.

They found that the patterns they hypothesized as likely were highly probable,

with most users choosing faces from their own race (62% for white males), and with the

models more probable than the typical faces (63.2% of males chose female models).

Additionally, they found that both males and females were more likely to choose

female faces (75.9% for males and 68.8% for females). Their conclusion recommended

that user choice should not be allowed in PassFaces-like graphical password system,

without some way to mitigate the effects of race and attraction.
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3.3.4 Cued-Recall Graphical Passwords

Dirik et al. [40] examine an image-processing based method to determine the proba-

bility of single click-points in PassPoints.2 Their method is quite complimentary to

ours (see Section 6.3.1), as it uses two different image processing techniques. Their

method uses segmentation to pick out objects, calculates centroids for each object,

and then uses intensity, colour, and foreground to rank each centroid. Robust dis-

cretization [13] was the assumed encoding method, and each grid square cell was

ranked according to the sum of the centriods in its area, and then used in a guessing

attack.

They tested their technique against two different images: birds and people (see

Figure 3.12). Their study gathered 254 passwords (one password per user) in a single

session (92 for birds and 142 for people), but did not test for memorability and thus

their data is only for user’s initial choice and does not account for the effect of resets

over time. Indeed, our studies (see Sections 6.3.2 and 6.5.1) found that hot-spotting

differed between a single-session lab study and a field study for some images (cf. cars

in Sections 6.7 and 6.5.6).

(a) birds. (b) people (unmodified image unavailable).

Figure 3.12: Images used by Dirik et al. [40].

Their results found that a 25-bit dictionary guessed 61% of passwords in the birds

image (which has a low amount of detail; see Figure 3.12a), and a 32-bit dictionary

2This work emerged after the publication of our February 2007 technical report [152] (which lead
to [151]); one part of our work described a different image processing method, as reported in Section
6.3.1 of this thesis, which also described the use of centroids as an avenue for improvement.
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guessed 8% of passwords on the people image. We note that their method for the more

detailed people image had similar success rates to some of our results (see Section 6.5.2;

cf. cars) for the similarly detailed images used in our study.

3.3.5 Challenge-Response Graphical Passwords

Golle et al. [55] present an attack against Weinshall’s high and low-complexity challenge-

response protocols (recall Section 3.2.2). The attack requires observing a few success-

ful login sessions. Their attack is based on the fact that every successful response

to a challenge allows the adversary to learn a boolean relationship between the bits

of the user’s secret key (i.e., an array of N bits, where the i-th bit is set to 1 if the

i-th picture belongs to the secret picture set F , and 0 otherwise). The observed re-

lationships are then described in disjunctive normal form, which allows a SAT solver

to recover the key (the user’s secret set of images).

They show that for the high-complexity protocol, after observing 60 rounds, the

suggested parameters can be broken in 102 seconds (for a single PC, dual 3.4 GHz

CPUs and 1 GB of RAM). Fewer than 60 rounds recovers multiple candidates of the

key. Recall that the high-complexity protocol suggested 11 rounds in a single login

session, which means the attacker can learn the key by observing as few as six logins.

For Weinshall’s low-complexity protocol, 250-400 rounds must be observed to provide

the unique key in less than a second. Recall that 22 rounds are suggested for the

low complexity protocol, thus 12-19 successful logins are enough with the suggested

parameters.

They examine the efficacy of their attack when increasing parameters for each

protocol, concluding that these schemes are fundamentally vulnerable to attacks based

on SAT solvers. For example, increasing the number of images a user must recall in

the low complexity protocol to 150 is still within reach of the SAT solver.

Although this is a powerful attack, it depends on the attacker being able to observe

a number of inputs (e.g., by shoulder surfing). Thus, the scheme may still offer security

in environments where observation is assessed to be unlikely. Since the password is

randomly assigned, it should be less vulnerable to guessing attack than text passwords;

the attacker would need to guess which images are in the user’s secret set. Despite



36

this random assignment, user studies showed that they were still memorable, but

this was achieved at the cost of a 2-3 session training time [161]. In this case, the

security offered by the scheme is the size of the full space, which for Weinshall’s [161]

suggested parameters, is 73 bits for the high-complexity protocol, and 191 bits for the

low complexity protocol.

3.4 Summary

Although many knowledge-based alternatives to text-based passwords have been pro-

posed, a number of them have already been found to be vulnerable to attack as

outlined in Section 3.3. Most of these attacks have something in common: they are

dependent upon predictable patterns in user choice. Chapter 4 presents a generaliza-

tion of these attack methods, with the goal of showing how they might be applied to

other, previously unanalyzed schemes.



Chapter 4

Generalization of Attack Strategies for Knowledge-based

Authentication

4.1 Introduction

The high success rate of brute-force dictionary attacks against text-based passwords

is believed to be strongly related to the recall capabilities of humans and how this

affects password selection: meaningful and thus more easily remembered strings are

frequently chosen. This leads one to ask whether other types of passwords (e.g.,

graphical) are also vulnerable to dictionary attack due to users’ tendencies to choose

memorable passwords. For relatively new password schemes where there is an absence

of large datasets from diverse populations, this thesis is motivated by the questions:

(1) How might an attacker build an attack dictionary? (2) How successful would an

attack using such a dictionary be?

Under the conjecture that available information relating to human memory and

preferences might reveal higher-probability password choices,1 we propose a general

predictive method for modelling and defining weak password subspaces in Section 4.2.

We show how this method maps to existing attack strategies in Section 4.3, and how

this method might map to new (previously unanalyzed) schemes in Section 4.4. We

expect that a clever attacker would prioritize a dictionary according to how preferable

or easy the elements in the password are to remember, based on evidence from similar

or related contexts.

1Although it is widely considered to be a fact that memorability and/or preference influence
a user’s password choices [102, 77, 72], and at least one (non-peer-reviewed) survey indicates that
84% of computer users consider memorability the most important attribute of a password (with 81%
choosing a common word as a result)[61], to the best of our knowledge this has yet to be scientifically
demonstrated.

37
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4.2 Predictive Models

Since text-based password dictionaries focus on words people recall better, we are

lead to consider analogous dictionaries for other knowledge-based password schemes

(e.g., graphical) for which we lack knowledge of the distribution of user choice. We

assume that users will choose passwords that minimize their complexity. We therefore

model higher-probability passwords as those that have low complexity.

We suggest the following general predictive method for modelling user choice in

knowledge-based authentication schemes (steps 3, 4, and 5 of which are similar to

generative attacks for behavioural biometrics [6]).

1. Identify the tasks users are required to do during login, what type of demand

this places on their memory (e.g., verbal recall, visual recall, recall of input

order), and what sort of preferences2 may apply.

2. Determine what relevant information is available about user’s memory and pref-

erences (possibly from other contexts) regarding these identified demands.

3. Identify password complexity properties based on this information. We infor-

mally define a password complexity property to be a characteristic that affects

password memorability or preference (and by conjecture, the chance of selection

by users).

4. Use these properties to model classes of probable passwords.

5. Estimate the size of these classes; any computationally exhaustible subset of

the password space is a candidate weak password subspace (see Definition 1).

Definition 1 (Weak password subspace). We define a weak password subspace

as a subset W of a password space P that exhibits the following three properties.

(1) (Smallness of W ). |W | ≤ te, where te is a threshold number of passwords that

may be tested within an adversary’s computational resources and environment.3

2Examples of preferences include attractiveness and familiarity.
3Throughout this thesis, we measure the size of a password space (or subspace) in terms of bits,

i.e., log2 of the number of entries.
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(2) (Significance of W ).
∑

wi∈W p(wi) ≥ α, where α is an upper bound on the

“tolerable” probability of a password compromise (over a period of time commensurate

with the resource expenditure in 1).4

(3) (Generability of W ). W has defining characteristics that allow generation of

all of its passwords.

Informally, we define a weak password as any password that falls within a weak

password subspace. Weak passwords are similarly informally defined by Spafford

[144].

Weak password subspaces are a general concept which extend beyond password

dictionaries; informally, they are subsets (of a space of secrets) whose elements are

more readily guessed. Other examples of this concept include weak keys in symmetric

cryptosystems [31] and weak RSA primes (e.g., see [92, Note 8.8]).

It follows from Definition 1 that for a scheme to be free of weak password sub-

spaces, it is necessary for it to have a large full password space (if less than te, the full

password space itself is weak); however, this is not sufficient due to what an attacker

might be able to predict about user choice. Different systems can tolerate different

levels of risk; this is captured by the parameter α which represents the tolerable prob-

ability for an attacker’s success. For example, a user might feel that it is tolerable for

an attacker to have a probability 2−10 of compromising their email password, whereas

government and banking servers might require a probability of at most 2−30. An

administrator of a system with many accounts might desire an even lower probability

of compromise, such that it accounts for the collective probability of any one account

being compromised (e.g., if there were 20 accounts on the system, he would surely

want α to be less than 0.05).

4This condition is naturally related to that of entropy [140, 90].
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4.3 How Predictive Models Map to Established Attack Methods

We believe our predictive models can apply to knowledge-based authentication schemes

that permit user choice. Table 4.1 is a selective summary of how these predictive

models (as outlined in Section 4.2) can map to the established attack methods of

some known password schemes (outlined in Section 3.3). We do not consider the

challenge-response attacks of Section 3.3.5 in this context, as the attack is based on

the information leaked from observing a set of login sessions, rather than patterns in

user choice.

Each of the dictionaries discussed in Table 4.1 are weak password subspaces, al-

though the success rates are quite different. Each attack method satisfies property (1)

in that they are small enough to be computationally exhaustible, and property (3) in

that they are generable. Note that number of bits shown is the log2 of the number of

entries in the dictionary. According to various studies, each dictionary would guess

a percentage of passwords that is significant when α ≤ 0.04. The most recent study

[82] has shown that (without permutations) 5% of text passwords can be guessed in

1.2 million guesses, and 4% of passphrases can be guessed in 400,000 guesses.

For recognition-based graphical passwords, Davis et al. [34] do not explicitly eval-

uate the sizes and success rates of the dictionaries we mention in Table 4.1, but focus

on a different (training-based) style of attack that requires a large sample of real pass-

words (the results were quite effective; details discussed in Section 6.6). In addition

to the attacks they examine, we think some of the results they describe (i.e., the

statistics on user choice of certain categories, for different demographics) could also

map to a predictive model. The data provided by Davis et al. [34] allows estimation of

the size and success of the predictive dictionaries mentioned in Table 4.1. For Faces,

there were at most one of twelve categories of faces (white/black/asian, model/typical,

and male/female) per panel; for example, there can be at most three female models

(white, black, and asian) on a given panel and 34 = 81. Although these particular

numbers are based on their study, one could imagine a more generic method to de-

termine which images on a panel belong to these categories (e.g., image processing or

“human computation” [159]). If we assume their reported percentages in Tables 4-7

are independent for each panel, we estimate their success rates by (.63)4 = 16% for
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Step Text Passwords Passphrases Recognition-based
Graphical Passwords

1. User must recall a User must recall a User must recognize and
text string. phrase. select a set of images

from a larger set.
Demands verbal Demands phrase Demands visual
recall. recall plus a method recognition and

to convert into a string (possibly) a mnemonic
(e.g., first character strategy to relate the
of each word). images.

2. Verbal recall for Verbal recall for Visual recognition
certain types of phrases and word abilities (and
words (e.g., nouns). sequences. Preferences preferences) for certain
Preferences may may relate to types of image.
involve words related popularity and/or
to something they like semantics.
(e.g., a sports team).

3. A word’s semantic A phrase’s popularity An image’s familiarity,
meaning and and/or semantic degree of attractiveness,
concreteness meaning. and associations between
(i.e., nouns are images (e.g., categories).
more concrete).

4. Nouns and Popular phrases and Which of presented set
permutations (e.g., the easiest methods of images are most
pluralization, common for constructing a text attractive and familiar
number placements). string from a phrase. to certain demographic

groups, linked by
common categories.

5. Dictionary size is Passphrase dictionary Although not explicitly
approx. 1 million size is approximately evaluated by Davis et
(20 bits) without 400,000 (19 bits) [82]. al. [34], some of their
permutations. results appear related

as follows. In Faces, a
dictionary containing
only female models
would have 81 entries,
and a single-race dic-
tionary would have 256
entries. See text in this
section for more details.

Table 4.1: Details for how our five predictive modelling steps from Section 4.2 map to some
known schemes.
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a dictionary composed of female models against male users, and (.62)4 = 15% for a

dictionary composed of white faces against white male users. Of course, it is possible

that these dictionaries could be further optimized to show the combined effect of race

and attractiveness, and that dependencies between images would lead to higher or

lower success rates than what we estimate here. Their main guessing attack results

(see Section 6.6) indicate that there are dependencies between the images in user

passwords, but statistics regarding the characteristics of these dependencies are not

currently available.

We believe that most system administrators would consider the results for all of

these schemes to be of concern, or significant according to their α threshold (recall

property (2), Definition 1).

4.4 How Predictive Models Can Map to New Schemes

We believe that predictive models could also be applied to new (previously unana-

lyzed) schemes. Here we describe how we might (and in fact do, in later chapters)

apply them to instances of two other types of graphical password: pure-recall and

cued-recall.

As indicated by Table 4.2, we generated dictionaries, and found them to be can-

didate weak password subspaces (i.e., they satisfy properties (1) and (3) of Definition

1). Note that number of bits shown is the log2 of the number of entries in the dic-

tionary. To show that they are weak password subspaces, we verify their significance

(property 2) with user studies; further details are provided in Chapters 5 and 6.

4.5 Summary

We have presented a generalized attack method based on predictive models. We

believe this method will aid in future security evaluations of knowledge-based au-

thentication schemes. We show how predictive modelling maps to existing attack

methods and consider how it might apply to two new, previously unanalyzed schemes.

We pursue the application of these predictive models to two representative graphical
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Step Pure-recall Graphical Passwords Cued-recall Graphical Passwords

1. Users must recall and reproduce Given a background image, users
an image in a specific temporal must recall and select parts of the
order. image in a specific temporal order.
Demands pure visual recall of Demands visual recall and/or search,
an image, and of temporal order. and relocation in a particular order.

2. Visual recall (and preference) for Visual recall (and preference) for
certain types of image, and certain parts or places in an image,
threshold number of visual and threshold number of visual
pieces of information. pieces of information.

3. Image recall factors (symmetry, Factors for recall, attention, and
low number of components). preference for certain points in

an image and conceptual
grouping of points.

4. For user-drawn graphical For click-based graphical
passwords, drawings that passwords, those that contain
exhibit symmetry and/or a low points that are commonly
number of components. preferred or draw attention, and/or

sets of points that follow part
of a simple temporal pattern.

5. For a representative scheme For a representative scheme
called “Draw-A-Secret” (DAS)[72], called PassPoints [164], we found a
we found a reduction from 58 to reduction from 43 to 18-16 bits
31 bits. (depending on the image).

Table 4.2: Details for how our five predictive modelling steps map to other (previously
unanalyzed) schemes.

password schemes in Chapters 5 and 6. As we show in Chapters 5 and 6, these meth-

ods do produce weak password subspaces, and thus we have added two more schemes

that support our general hypothesis that other knowledge-based user authentication

methods are weak when based on user-chosen secrets.



Chapter 5

Application to Pure-Recall Graphical Passwords

5.1 Introduction

We apply our predictive method of Chapter 4 to a representative pure-recall graphical

password scheme known as “Draw-A-Secret” (DAS; recall Section 2.4.1). We believe

our methods for DAS can be applied to all user-drawn graphical password schemes

(gud-passwords). Examples of such graphical passwords include free-form user-drawn

graphical password schemes (e.g., DAS [72] and variations such as Pass-Go [146]), and

schemes whereby a user might create a graphical password by dragging and dropping

basic shapes.

We detail the steps to create a predictive model for gud-passwords in Section 5.2,

and provide further details about its construction in Section 5.3. We describe our

evaluation methodology in Section 5.4. Finally, we discuss our results in Section 5.5.

5.2 Predictive Model Creation

Here we provide further details for each step of applying our predictive modelling

method to the DAS scheme. The subsections herein follow the predictive model steps

outlined in Section 4.2.

5.2.1 User Tasks and Demand

We focus on user-drawn graphical passwords (gud-passwords), where a user’s login

task involves pure visual recall of a drawn image, and recall of the temporal order

(i.e., how the image was drawn). This places a demand on the user’s visual recall,

and may be influenced by visual preferences.

44
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5.2.2 Other Relevant Information

To determine relevant information about visual recall, we examine and discuss a

collection of relevant cognitive studies on visual recall.

Generally, free recall is ordered along the concreteness continuum: concrete words

are recalled more easily than abstract words, pictures more easily than concrete words,

and objects better than pictures [88]. Various studies support this result (e.g., [76, 21,

89]). Another study [17] found that a series of line drawings is poorly remembered

if the subject is unable to interpret the drawings in a meaningful way. The more

concrete a drawing, the more meaningful it will be to the viewer.

There appears to be little existing research that examines the types of pictures peo-

ple recall better. However, one cognitive study with interesting implications showed

experimentally how visual recall progressively changed over time toward a symmetric

version of the image [121]. Given a set of asymmetrical, geometric images, when

test subjects were asked to draw the image from recall, all changes made from the

originals were in the direction of some balanced or symmetrical pattern. This change

was progressive over time toward a symmetric pattern. That people recall images as

increasingly symmetric with time suggests to us that people prefer images that are

symmetric.

A representative overview of literature for human symmetry perception [154] notes

that many objects in our environment are symmetric. There is also significant ev-

idence [160] that mirror symmetry has a special status in human perception over

other symmetry types such as repetition, translation or rotational symmetry, which

were found to require scrutiny; in contrast, mirror symmetry is “effortless, rapid, and

spontaneous” [154].

The classical studies mentioned above found better recall for pictures than words,

and better recall for objects than pictures. If people recall objects best, and most

objects are mirror symmetric, this suggests that people may recall mirror symmetric

objects best. This is supported by an observation by Attneave [3]: when subjects

were given random patterns and symmetric patterns of dots, the symmetric ones

were more accurately reproduced than random patterns with the same number of

dots. Attneave theorized that this may indicate that some perceptual mechanism is
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capable of organizing or encoding the redundant pattern into a simpler, more compact,

less redundant form. In a separate study, French [53] observed that dot patterns that

were symmetric were more easily remembered. Intuitively, this is no surprise – in the

case of mirror symmetry, a subject need only recall half of the image and its reflection

axis in order to reconstruct the entire image.

Mirror symmetry has a special meaning to human visual perception, particularly

when the axis is about the vertical and horizontal planes. Mirror symmetry has been

found to be more easily perceived as having meaning when it is about the vertical axis,

followed by when it is about the horizontal axis [160]. Note that most living organisms

and plants, as well as almost all forms of human construction are mirror symmetric

(reflective) about a vertical axis. There is mirror symmetry in people, animals, leaves,

flower petals, automobiles, planes, trains, art, buildings, tools, furniture, and religious

symbols. The objects in the average office or home are another example.

Attneave’s findings of shape complexity [4] also imply that people are better at

recalling a low number of components. The following studies imply that values of

“low” might lie between 3 and 8. Vogel and Machizawa [157] found neurophysiolog-

ical evidence that the human visual short term memory is limited to 3-4 symbols.

Cowan [30] reviews a large set of studies showing that, on average, the capacity for

human mental storage is actually 4 (plus or minus one) “chunks” . Similar values were

obtained for the number of dots recalled in grids of different sizes (recall decreased

significantly after 3 or 4 dots) [64]. Alternately, French [53] found that people have

optimal memory for dot patterns containing 6 to 8 dots.

5.2.3 Identify Complexity Properties

Motivated by these collective studies, we propose the following.

Conjecture 1 Since people are more likely to recall symmetric images and patterns,

and people appear to prefer and perceive mirror symmetry as having a special status,

a significant subset of users are likely to choose mirror symmetric patterns as gud-

passwords.
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More specifically, we propose that the mirror symmetric patterns chosen are more

likely to be about vertical or horizontal axes. Findings that people are more likely to

recall a low number of components (Definition 2) leads us to Conjecture 2.

Definition 2 (component). A component is a visually distinct part of an image.

For example, a component in DAS could be a drawn stroke. As another example,

for a scheme wherein the user creates a password by dragging and dropping basic

shapes, a component is a dragged/dropped shape.

Conjecture 2 Since people are likely to only recall a small number (between 3 and

8) of symbols, a significant subset of users are likely to choose gud-passwords with a

small number of components.

These conjectures identify two complexity properties: degree of symmetry (more

symmetry results in lower complexity), and number of components (fewer components

results in lower complexity).

5.2.4 Model Classes of Probable Passwords

For gud-passwords, Conjectures 1 and 2 lead us to define a Class D1 password (Def-

inition 3) and a Class D2 password (Definition 4). Here, D is used to denote that

these classes apply to user-drawn graphical passwords (gud-passwords).

Definition 3 (Class D1 password). A Class D1 password is a gud-password that

exhibits mirror symmetry about a vertical or horizontal axis in its components. Thus

each component is either mirror symmetric in its own right, or is one of a pair of

components that are mirror symmetric images of each other.

Definition 4 (Class D2 password). A Class D2 password is a gud-password with

a small number 3 ≤ c ≤ 8 of components.

The Class D1 password space is composed of the set of encoded representations

of Class D1 passwords; these collectively form a graphical dictionary (i.e., a Class D1

graphical dictionary). Class D2 password space and Class D2 graphical dictionary are

defined analogously.
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A clever attacker doing a guessing attack would prioritize candidate password

guesses according to their probability of being chosen. We believe the graphical dic-

tionaries D1 and D2 would be the basis of such an ordering. We suggest that a clever

attacker may prioritize a multi-class graphical dictionary according to passwords with

an increasing number of components, and built from these classes as follows (see Fig.

5.1)::

1. Class D1 ∩ Class D2,

2. Class D2 − (Class D1 ∩ Class D2),

3. Class D1 − (Class D1 ∩ Class D2),

4. Full password space − (Class D1 ∪ Class D2)

Figure 5.1: Illustrative relationship between Class D1 and D2.

We place Class D2before Class D1as it is a smaller class, which would take less time to

exhaust (see Section 5.2.5). Each class might also be internally prioritized as discussed

in their respective sections below.

Class D1 Dictionaries

A logical way to prioritize the Class D1 dictionary is to assume that it is more likely

for a user to choose a single reflection axis, or reflection axes that are close together. If
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an image’s components are symmetric about axes that are far apart (e.g., Fig. 5.2a),

the image does not appear to be symmetric as a whole; we say such images are locally

symmetric. When an image’s components are symmetric about axes that are close

together (e.g., Fig. 5.2b), it is increasingly symmetric as a whole, producing an image

that is pseudo-symmetric. When all components of an image are symmetric about

the same axis (e.g., Fig. 5.2c), it produces an image that is symmetric as a whole

(i.e., globally symmetric). The set of globally symmetric passwords best captures the

symmetry discussed in Section 5.2.2, and our intuition suggests that global symmetry

(Fig. 5.2c) is more likely than pseudo-symmetry (Fig. 5.2b), which is more likely than

local symmetry (Fig. 5.2a).

Figure 5.2: Example Class D1 DAS passwords containing the same components, symmetric
about different patterns of axes: (a) 3 different, scattered axes, (b) 3 different, nearby axes,
and (c) a single central axis.

This leads us to define sub-classes of Class D1, based on the number of axes that

the image’s components are symmetric about. If it turns out that global symmetry

is more likely than pseudo-symmetry (and we found it is), an attacker may place

passwords that are composed of components symmetric about the center-most axes

at a higher priority in the graphical dictionary. Additionally, for user-drawn schemes

(e.g., DAS), if the user subconsciously uses the input area to frame the drawing (i.e.,

using the grid as part of the drawing’s overall symmetry), the resulting drawings

would be symmetric about the center-most axes.
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Definition 5 (Class D1a). Class D1a is the subset of passwords in Class D1 that

use only the center 3 of each set of horizontal or vertical axes (e.g., the marked axes

in Fig. 5.3), producing pseudo-symmetric images.

4

3

2

1

5

21 4 53

Figure 5.3: Class D1a reflection axes for the DAS scheme. The thickest axes are the vertical
and horizontal center axes. Adjacent axes are marked as thinner.

Definition 6 (Class D1b). Class D1b is the subset of passwords in Class D1 that use

only the center of each set of horizontal or vertical axes, producing globally symmetric

images.

Class D1b captures all passwords that are globally symmetric and centered about

the grid (vertically and/or horizontally), plus those that have components symmetric

about the center vertical and horizontal axes (e.g., the coffee cup in Fig. 5.4).

Class D1b is a subset of Class D1a, which is a subset of Class D1. We expect that

an attacker would order Class D1b passwords first in a Class D1 graphical dictionary,

followed by the remaining Class D1a passwords, and finally the remaining passwords

in Class D1.

Class D2 Dictionaries

An obvious attack strategy for Class D2 graphical dictionaries is to prioritize based

on the number of components, in increasing order. A dictionary attack would thus try
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Figure 5.4: Example of a Class D1b DAS drawing. One component (the handle) is symmet-
ric about the center horizontal axis, and another (the cup) is symmetric about the center
vertical axis.

all entries with one component, then two, etc. Given the evidence to show a threshold

number of 3 or 4 components is more memorable than more than 4 components (recall

Section 5.2.2), we focus on those Class D2 passwords with c = 4 for our model. An

attacker interested in targeting a particular account might expand a dictionary to

consider larger values of c.

Class D3, D4, and D5 Dictionaries

Here we mention three additional classes of graphical dictionaries. User-drawn pass-

words in the form of alphanumeric symbols are considered by Tao [146]; we suggest

calling this Class D3. We identify Class D4 and Class D5 based on repetitive and

rotational symmetry respectively. These are common types of symmetry, although

according to the previously cited cognitive studies they do not hold the same special

status as mirror symmetry. We note that these classes (and possibly many others)

might also be placed in a graphical dictionary. We do not pursue further details in

this thesis.

5.2.5 Estimating the Size of Classes

To estimate the size of Classes D1 and D2, we must choose a representative scheme;

we choose DASJ . The DASJ graphical password scheme relies on a user’s ability to
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(a) Repetitive symmetry (b) Rotational symmetry

Figure 5.5: Example Class D4 and D5 DAS passwords.

recall their DASJ password “exactly” (as defined by the resolution of the encoding

scheme). For this analysis, we only consider passwords that are allowed within DASJ

(see Section 2.4.1).

To apply Class D1 to DASJ , we make further assumptions regarding the temporal

order, resulting in a subset SD1 as discussed below; we believe this represents the most

probable subset of DASJ Class D1 passwords. To apply Class D2 to DASJ , we assume

that a component is a stroke and that c = 4 (in Definition 4); we call this SD2 . Further

details concerning the construction of SD1 and SD2 are provided in Section 5.3.

Following the relevant parts of the attack strategy from Section 5.2.4, and using

subsets of Class D1, we expect that a DASJ graphical dictionary would be prioritized

in the following order (see Fig. 5.6):

1. SD1b
∩ SD2

2. (SD1a- SD1b
) ∩ SD2

3. (SD1- SD1a) ∩ SD2

4. SD2 - SD1

5. SD1b
- SD2

6. SD1a - (SD2∪ SD1b
)

7. SD1 - (SD2∪ SD1a)



53

8. Full DASJ password space - (SD1 ∪ SD2)

Figure 5.6: Illustrative relationship between SD1b
, SD1a , SD1 , and SD2 .

While we expect (as mentioned in Section 5.3.1) that our Class D1 graphical

dictionary for DASJ will include most Class D1 passwords, we recognize that some

Class D1 passwords will not be included due to our definition of SD1 . However, even

if our dictionary only includes as few as e.g., 1
8

of the ways users would typically

draw Class D1 passwords, this would imply our approximated bit-sizes are off by at

most three bits – not significantly affecting our results. Furthermore, there is strong

empirical support through user studies that our assumptions are indeed quite realistic

(see Section 5.5), and thus the above error estimate appears to be conservative.

We approximate the size of password spaces SD1b
, SD1a , SD1 , and SD2 , individually

(Section 5.2.6 and Section 5.2.7) and their intersections (Section 5.2.8).

5.2.6 Approximate Size of Class D1 Graphical Dictionaries

To estimate the size of various subsets of the password space, many (equivalent)

counting methods are possible. Our definitions in Sections 5.2.4 defines what DASJ

passwords are in the Class D1 password space, and Section 5.3.1 defines which of

these Class D1 passwords belong to SD1 . We give the details of counting methods for

generating these results in Appendix C of a 2005 technical report [112].
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Table 5.1 gives sample results for SD1 and the subsets of SD1a and SD1b
(see

Definitions 12 and 13). As in Chapter 4, the number of bits shown is the log2 of

the number of entries in the dictionary. Values given are log2(number of passwords).

SD1a and SD1b
both show an exponential reduction from the full DASJ space: SD1b

grows at an exponential rate of approximately 3.6 bits per unit increase in password

length and SD1a grows at a corresponding rate of approximately 4.0, whereas the full

DASJ space and SD1 grow at a corresponding rate of approximately 4.8. For example,

when the maximum password length Lmax = 12, the size of the full space is 57.7 bits,

SD1 is 57.6 bits, SD1a is 48.1 bits, and SD1b
is 42.7 bits. The size of the full DASJ

password space was cross-checked using a variation of our method (full details are

given in Appendix C of the cited technical report [112]), closely matching the results

given by Jermyn et al. [72].

Lmax 1 2 3 4 5 6 7 8 9 10

Full DASJ space 4.7 9.5 14.3 19.2 24.0 28.8 33.6 38.4 43.2 48.1
SD1 4.7 9.5 14.3 19.1 23.9 28.7 33.6 38.4 43.2 48.0
SD1a 3.3 7.7 11.6 15.7 19.8 23.8 27.9 31.9 36.0 40.0
SD1b

3.3 6.9 10.5 14.1 17.7 21.2 24.8 28.4 32.0 35.6

Lmax 11 12 13 14 15 16 17 18 19 20

Full DASJ space 52.9 57.7 62.5 67.3 72.2 77.0 81.8 86.6 91.4 96.2
SD1 52.8 57.6 62.4 67.2 72.0 76.8 81.7 86.5 91.3 96.1
SD1a 44.1 48.1 52.1 56.2 60.2 64.3 68.3 72.4 76.4 80.4
SD1b

39.1 42.7 46.3 49.9 53.4 57.0 60.6 64.2 67.8 71.4

Table 5.1: Bit-size of DASJ space, for total length at most Lmax on a 5 × 5 grid.

Each of the three subclasses of Class D1 passwords presented in Table 5.1 allow

perceptually quite distinct classes of drawings (recall Fig. 5.2). We initially found

the size of SD1 to be surprisingly close to that of the full DASJ space; however, upon

reflection this is sensible, as the only requirement for a stroke to be symmetric is

that it is locally symmetric about any possible axis (e.g., Fig. 5.2a), which includes

the combinatorially large set of all permutations of dots, and lines of length two (see

Section 9.1, Table 9.4 for an enumeration of this set).

The smaller the set of reflection axes used, the smaller the corresponding graphical
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sub-dictionary becomes. As discussed earlier, a reasonable attack strategy is to narrow

down the graphical dictionary to a small number of axes, or prioritize a search such

that globally symmetric passwords (e.g., Fig. 5.2c) are considered first. When any

single axis (or two) are considered at a time to produce globally symmetric passwords,

each resulting subset will never be larger than that for the two center axes (i.e., one

vertical and one horizontal), as the latter maximizes the symmetric area in which the

passwords can reside. Thus, the maximum dictionary size of such a variation would

be at most a small constant factor, proportional to the number of axes considered, of

that using only the two center (horizontal and vertical) axes.

5.2.7 Approximate Size of Class D2 Graphical Dictionaries

For Class D2 graphical dictionaries, following Jermyn et al. [72] we focus our discussion

on a set of results for a 5 × 5 grid size, giving the bit-size of the password space for

passwords of length at most Lmax (from 1 to 20) and each possible maximum stroke-

count X. The full set is provided in Table 5.2.
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Figure 5.7: Size of DASJ password space, for passwords of at most X strokes (for a 5 × 5
grid and a fixed maximum password length Lmax). SD2 (for c = 4) is represented by the
thick line where X = 4.
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X 1 2 3 4 5 6 7 8 9 10
Lmax

1 4.7
2 6.7 9.5
3 8.5 12.3 14.3
4 10.3 14.6 17.5 19.1
5 12.1 16.8 20.3 22.7 24.0
6 13.9 18.9 22.8 25.7 27.7 28.8
7 15.7 21.0 25.1 28.4 30.9 32.7 33.6
8 17.5 23.0 27.3 30.9 33.8 36.1 37.6 38.4
9 19.3 25.0 29.5 33.4 36.6 39.2 41.2 42.6 43.2
10 21.0 26.9 31.7 35.7 39.1 42.1 44.4 46.3 47.5 48.1
11 22.8 28.9 33.8 38.0 41.6 44.8 47.4 49.6 51.3 52.4
12 24.6 30.8 35.8 40.2 44.0 47.4 50.3 52.8 54.8 56.3
13 26.4 32.7 37.9 42.4 46.4 49.9 53.0 55.7 58.0 59.9
14 28.2 34.6 39.9 44.6 48.7 52.4 55.7 58.6 61.1 63.2
15 30.0 36.5 41.9 46.7 50.9 54.8 58.2 61.3 64.0 66.4
16 31.8 38.4 43.9 48.8 53.2 57.1 60.7 63.9 66.8 69.4
17 33.6 40.3 45.9 50.9 55.3 59.4 63.1 66.5 69.6 72.3
18 35.4 42.1 47.9 52.9 57.5 61.7 65.5 69.0 72.2 75.1
19 37.2 44.0 49.8 55.0 59.6 63.9 67.9 71.5 74.8 77.8
20 39.0 45.9 51.8 57.0 61.8 66.1 70.2 73.9 77.3 80.5

X 11 12 13 14 15 16 17 18 19 20
Lmax

11 52.9
12 57.3 57.7
13 61.3 62.1 62.5
14 64.9 66.2 67.0 67.3
15 68.4 70.0 71.1 71.9 72.1
16 71.6 73.5 75.0 76.1 76.7 77.0
17 74.7 76.8 78.6 80.0 81.0 81.6 81.8
18 77.7 80.0 82.0 83.6 84.9 85.9 86.4 86.6
19 80.6 83.1 85.2 87.1 88.7 89.9 90.8 91.3 91.4
20 83.4 86.0 88.4 90.5 92.2 93.7 94.9 95.7 96.1 96.2

Table 5.2: Bit-size of DASJ with different maximum lengths and stroke-counts as
illustrated in Fig. 5.7. Values are given for total length at most Lmax with at most X
strokes on a 5 × 5 grid. S2 is shown in the column where X = 4.
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Fig. 5.7 shows the effect (log2) of increasing Lmax for a given X: the password

space’s size increases exponentially, illustrating the roles of both Lmax and X in the

DASJ password space. Note that the left ends of all but the line representing the

full password space (X = Lmax) have been omitted for simplicity – we know that the

maximum stroke-count for a password of length Lmax is Lmax, thus any line where

X > Lmax will have the same value as when X = Lmax.

Increasing X from 1 to Lmax accounts for at least one half of the bit-size (see

the difference between the X = 1 line and X = Lmax , when Lmax ≥ 5). The

top line, where X = Lmax, in Fig. 5.7 shows what one might expect from reading

the original DAS paper [72] (i.e., 58 bits of security against guessing attacks when

Lmax = 12). The other thick line, where X = 4 represents the size of SD2 . We

suggest that SD2 is more representative of the “effective security” of unconstrained

user-selected DAS passwords, taking into account the entropy reduction due to user

choice in DAS passwords, and assuming all passwords composed of 4 or fewer strokes

are equi-probable. This graph highlights the impact of the number of strokes on

the DASJ password space; the size of the password space is significantly smaller (at

40 bits) if users choose a password of length at most 12, composed of 4 or fewer

strokes. The size of the password space still increases with longer password lengths

(as shown by the rise in each curve), but at a slower rate for smaller stroke-counts (as

shown by the gaps between curves). Note that for a fixed Lmax, a smaller maximum

stroke-count X implies a longer average stroke length.

Much of the strength of DASJ arises from the temporal order in terms of the

direction of strokes, and more importantly, the order in which these strokes are drawn.

This explains why increasing the stroke-count results in large increases in the size of

the password space: there are many more possible permutations of these strokes.

A high stroke count for a fixed password length implies a short average stroke

length. This leads us to ask: how much of the total password space consists of pass-

words composed entirely from seemingly unlikely combinations of very short strokes,

i.e., entirely of strokes of length 1 and/or 2? This is easily computed by discarding

those strokes of length > 1 (or > 2), and the results are interesting: passwords com-

posed entirely of strokes of length 1 comprise approximately 1
4

of the total password
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space, and passwords composed of only strokes of length ≤ 2 comprise approximately

1
2

of the password space. Thus 1
2

of the password space is already accounted for by

passwords that appear to be very unlikely user choices. Full details for these results

are provided in Tables 9.5 and 9.4.

This might be examined from another angle: how much of the total password

space consists of passwords without any strokes of length 1? Again this is easily

counted, with the result that if users do not draw any strokes of length 1 (e.g., dots)

in their DAS password, the size of the password space when Lmax = 12 on a 5×5 grid

is effectively reduced from 58 to 40 bits, very dramatically increasing susceptibility to

dictionary attacks. Full details for these results are provided in Table 9.7. We expect

that many user-chosen passwords will not contain any length-1 strokes – and note

with interest that 51.5% of passwords in one large study did not contain any length-1

strokes (see Section 5.5.1).

5.2.8 Approximate Size of Combined Class D1 and D2 Dictionaries

Figure 5.8 shows how restricting the maximum number of strokes, while also stay-

ing within different subclasses of Class D1 passwords, affects the size of the DASJ

password space. All data shown is for Lmax = 12 on a 5 × 5 grid.

The triangle point on the upper-right corner is the total number of DASJ pass-

words of length ≤ 12 on a 5×5 grid. Again, this 258 value is the“security”measure one

might originally have expected from DASJ . Notice the triangle point where X ≤ 4

– this value of 240 shows the effect of number of strokes on the full DASJ password

space. The SD1b
bar directly below is the intersection of X ≤ 4 with SD1b

.

5.3 Model Details

Here we discuss the details of our method to determine the size of the sets SD1 and

SD2 . In Section 5.3.1, we make assumptions concerning the temporal order (i.e., the

order of the input of cells) to map Class D1 passwords to DASJ , leading us to define

the set SD1 (Definition 12). Similarly, Section 5.3.2 discusses the mapping of Class

D2 passwords to DASJ , leading us to define the set SD2 (Definition 14).
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Figure 5.8: Bit-size of DASJ graphical password space. Values are given for each dictionary,
with a fixed total password length at most 12, with at most X strokes on a 5 × 5 grid (see
Table 5.3 for actual data points).

X 1 2 3 4 5 6 7 8 9 10 11 12
Dict.

Full
Space 24.6 30.8 35.8 40.2 44.0 47.4 50.3 52.8 54.8 56.3 57.3 57.7
SD1 18.2 26.4 32.8 38.0 42.4 46.2 49.4 52.1 54.4 56.1 57.2 57.6
SD1a 17.6 25.2 31.4 36.6 41.0 44.6 47.1 48.3 48.7 48.8 48.8 48.8
SD1b

16.1 22.2 26.9 30.7 34.0 36.7 38.9 40.6 41.8 42.5 42.7 42.8

Table 5.3: Bit-size of DASJ space as illustrated in Fig. 5.8. Values are given for each
dictionary, with a fixed total password length at most 12, with at most X strokes on
a 5 × 5 grid.
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5.3.1 Class D1 DASJ Graphical Dictionaries

In this section we describe how we map the visual mirror symmetry from Class D1

to DASJ passwords. Our general approach and additional cases are described herein,

leading us to define our mapping from Class D1 to DASJ .

Basic Terminology and General Approach

Our approach is to model each Class D1 password in DASJ as a series of strokes

(each representing a single component or pair of components; recall Definition 3)

drawn using only symmetric strokes (Definition 8). Each such stroke is modelled by

a defining stroke from virtual start point s = (x, y) to virtual end point e = (x, y).

We enumerate all possible values of s and e for each reflection axis, using these values

as a model of the symmetry, and then consider the ways the resulting (user-drawn)

stroke might be drawn. We emphasize that s and e are used to model the symmetry,

and are not necessarily the start and end points of the user-drawn stroke.

To capture mirror symmetric DASJ passwords, we first consider which reflection

axes to use. We assume that the user references the grid lines for the symmetry in

the drawing, since if the reflection axis is a point of reference, the password will be

easier to repeat exactly. Therefore, the reflection axes considered are those that cut

a set of grid cells (Fig. 5.9a), or are on a grid line (Fig. 5.9b). This means that any

symmetric password drawn such that its axis is off-center within a set of cells is not

considered. For example, the password in Fig. 5.10a is visually symmetric when the

grid is not in place, but we do not consider it part of the set of Class D1 passwords

in DASJ since its reflection axis is not on a grid line or centered in a set of cells as

shown in Fig. 5.10b. We justify this assumption as follows: it is more difficult for

a user to draw an exactly repeatable symmetric password without a visible point of

reference on the grid for the reflection axis.

We thus define the set of axes within a W × H grid (width W, height H): A =

Ah ∪ Av; Ah = {1, 1.5, 2, . . . , (H − 1).5, H}; Av = {1, 1.5, 2, . . . , (W − 1).5,W}. Here

i.5 is the grid line separating rows i and i + 1, or columns i and i + 1 respectively.

Definition 7 (symmetric area). The symmetric area (given a reflection axis a),
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Figure 5.9: Possible axes can (a) cut a set of cells; or (b) be on a grid line between sets of
cells.
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Figure 5.10: Drawing that is symmetric about a difficult to reference axis. Assuming the v
is drawn before the dot, the encoding of (b) is (2,2), (3,2), (3,3), (3,2), pen-up, (3,2), pen-
up. If shifted slightly right to be symmetric about the vertical axis x = 3, it has symmetric
encoding: (3,2), (3,3), (3,2), pen-up, (3,2), pen-up.
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is the area between a and the closest grid boundary parallel to a, reflected about a

(see Fig. 5.11).
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1
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Figure 5.11: Example symmetric areas for (a) the axis x = 1; and (b) x = 2.5

One way to draw a symmetric stroke is to draw a stroke within the symmetric

area (possibly crossing over the reflection axis), then draw its reflection about the

reflection axis as shown in Fig. 5.13a. We call the initial stroke from virtual start

point s to virtual end point e that the reflection is based upon the defining stroke, and

the reflection the reflected stroke, which can be drawn from sR (the reflection of s) to

eR (the reflection of e) or vice versa. When the defining stroke is drawn from e to s,

we consider (and count) it a different defining stroke, since input order is relevant in

DASJ .

Definition 8 (symmetric stroke). A symmetric stroke is a stroke (or pair of

strokes) drawn such that it follows one of the disjoint case, continuous case, or closed

case (per Definitions 9, 10, and 11). For context, see Fig. 5.12. Whether actually

drawn as a single stroke or pair of strokes, it is modelled by the combined result of a

defining stroke and a reflected stroke about an axis a, remaining within the bounds

of the symmetric area defined by a.

Definition 9 (disjoint case). The disjoint case consists of two user-drawn strokes

holding the property of exact reflection. Given a defining stroke z, its reflected stroke
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Figure 5.12: Example DASJ password in Class D1, but not drawn in symmetric strokes.

zR (relative to an axis a) is said to be an exact reflection if zR is z’s mirror image

about a and they are separated by a pen-up.

As a stroke pair that falls within the disjoint case has the property of exact

reflection, its length will always be even. The product of the number of ways to

draw a defining stroke and the number of ways to draw its reflected stroke provides

the number of ways to draw that stroke in the disjoint case (effectively counting each

way to draw the reflected stroke for each way to draw the defining stroke). The

disjoint case is not the only type of symmetric stroke (see Definition 8).

1 2
1

(b) Continuous case (i) (c) Continuous case (ii)

eRe e eR e eR

sRssRss sR
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(a) Disjoint case
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Figure 5.13: Disjoint and Continuous Cases. Symmetric strokes consist of a defining stroke
(solid line from s to e) and reflected stroke (solid line from sR to eR). The last two, visually
representing the letter ‘U’, show continuous cases where: (b) the axis cuts a set of cells; and
(c) the axis is on a grid line.
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Continuous and Closed Cases

A point p = (x, y) in an encoded defining stroke is potentially continuous if it denotes

a cell that is either cut by the reflection axis a in question, or adjacent to a when

a is on a grid line. If p is potentially continuous, its reflection pR is in the same

cell as p or in a neighboring cell, and thus the stroke can be drawn directly from

p to pR without a pen-up. When the start and end points of a defining stroke are

potentially continuous, the three most apparently straightforward ways to draw the

resulting symmetric stroke are as follows: disjointly, as one continuous stroke, or as

one continuous closed stroke (see Definitions 9, 10, and 11).

A symmetric stroke can be drawn as a continuous case when the defining stroke’s

end point is potentially continuous.

Definition 10 (continuous case). The continuous case consists of one user-drawn

stroke, whereby the defining stroke continues through the axis to the reflected stroke,

in a single, continuous stroke.

For example, the encoding for Fig. 5.13b would be: (1,1), (1,2), (1,3), (1,4), (2,4),

(3,4), (4,4), (5,4), (5,3), (5,2), (5,1), ending with a pen-up. The stroke could also be

drawn in the reverse order. Examples of the same visual representation of a ‘U’, with

one disjoint and the other continuous, are shown in Figures 5.13a and b. Note that

the continuous case’s encoding is different, depending on whether the axis a cuts a set

of cells or is on a grid line. If a cuts a set of cells as in Fig. 5.13b, the defining stroke’s

endpoint e is the same as its reflection eR. Since there is no pen-up to separate e from

eR, it cannot appear in the encoding twice, thus eR does not appear in the resulting

encoding. If a is on a grid line (Fig. 5.13c), e and eR reside in different cells, and both

e and eR appear in the resulting encoding.

A symmetric stroke can be drawn as a closed case when both the defining stroke’s

start and end points are potentially continuous (e.g., Fig. 5.14).

Definition 11 (closed case). The closed case consists of one user-drawn stroke,

whereby the defining stroke continues through the reflection axis to the reflected

stroke, and then ends up back in the same cell as the start of the defining stroke,
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essentially creating a closed shape. When a drawing is closed, the user-drawn stroke

may start and end at any point in the shape (e.g., Fig. 5.14a).

As with the continuous case, the closed case’s encoding is different, depending on

whether the axis a cuts a set of cells or is on a grid line. The continuation of the

defining stroke into the reflected stroke will be encoded as in the continuous case; the

difference between these two cases is the encoding to join the reflected stroke back

into the defining stroke. When a is on a grid line, the start point of the defining stroke

is repeated as the last point of the user-drawn stroke (e.g., Fig. 5.14b). When a cuts

a set of cells (e.g., Fig. 5.14a), it is the same as the continuous case since s = sR,

enclosing the shape. Thus, to avoid double-counting, we must (and do) exclude the

cases where s is potentially continuous from the continuous case. Note that when

the defining stroke (completely) repeats over itself is counted by this case; this is

included when the defining stroke is a closed case itself. Cases where the closed case

only partially repeats over itself (e.g., only a few cells) are not considered a symmetric

stroke.

3
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1
21 4 5 1 2 3 4
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(a) (b)

e

s
s

e

Figure 5.14: Different types of the closed case. The reflection axis in (a) cuts a set of cells,
and (b) is on a grid line. Case (a) shows all possible user-drawn start/end points in the
symmetric stroke modelled by s and e.
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Classes SD1, SD1a, and SD1b

The definition of Class D1 passwords takes into account only their final visual appear-

ance. There is a one-to-many relationship between a given Class D1 password and

the number of ways it can be drawn in the DASJ scheme (which are then mapped

to possibly fewer unique DASJ encodings). We believe there are some more likely

ways that users will draw mirror symmetric components in their DAS passwords; we

use SD1 to denote this “more probable” subset of unique DASJ encodings of Class D1

passwords defined as follows.

Definition 12 (SD1). SD1 is the DASJ -related subset of Class D1 passwords, con-

taining only those passwords whose components are drawn in symmetric strokes, as

per Definition 8.

Definition 13 (SD1a and SD1b
). SD1a and SD1b

are subsets of SD1 that belong to

Class D1a and Class D1b respectively. More formally, SD1a = SD1 ∩ Class D1a; SD1b

= SD1 ∩ Class D1b.

Informal user studies by others have shown that the temporal order has an adverse

effect on a user’s ability to recall a DAS password [54]. This suggests that users will

choose DAS passwords with less complexity (e.g., fewer strokes). We believe that

SD1 captures the easiest (and thus most likely to be chosen) ways to draw Class D1

passwords, although not all possible ways. The details of how we enumerated the

DASJ Class D1 space (or equivalently, graphical dictionaries) can be found in our

2005 technical report [112].

5.3.2 Class D2 DASJ Graphical Dictionaries

In Definition 4, we define a Class D2 password to have at most c components; for our

DASJ analysis, we use c = 4, since this value has support from at least 2 cognitive

studies (recall Section 5.2.2). We assume that users will try to minimize the amount of

temporal information to recall by drawing each component with the smallest number

of strokes possible; we make the simplifying assumption that this is 1 (one). Thus

for DASJ , we characterize a Class D2 password by the number of composite strokes.
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This leads us to define SD2 below. We quantify the relationship between the DASJ

password space and the stroke-count in Section 5.2.7.

Definition 14 (SD2). SD2 is the DASJ -related subset of Class D2 passwords,

containing only those passwords having a stroke-count of 4 or less.

Our general approach is to determine how many DASJ passwords are of length

at most a given maximum password length Lmax, with a maximum stroke-count of

X. Counting all passwords of length at most Lmax follows Jermyn et al. [72]. We

modify their function P(L,G) that counts the number of passwords of length ≤ L

(where 1 ≤ L ≤ Lmax is the password length and G is the grid dimension), to limit

the stroke-count in each password to at most X. The resulting function is provided

in (5.1).

P (L,G,X) =


0 if X = 0 and L > 0

1 if X ≥ 0 and L = 0
L∑

�=1

N(�) · P (L − �,G,X − 1) otherwise

(5.1)

P defines the cardinality of the set of passwords with X or fewer strokes, of total

password length at most L. P is defined recursively in terms of N(�) (see [72]), which

gives the number of strokes of length �. We use (5.1) to determine the results in

Section 5.2.7.

5.4 Evaluation Methodology

Here we discuss our method to evaluate which of our dictionaries qualify as weak

password subspaces for the DAS scheme. First, we must define thresholds for how

much risk we are willing to accept (i.e., α in Definition 1), and the resources of

an attacker we expect protection from (i.e., te in Definition 1). Of course, these

thresholds are not fixed as they are dependent upon the amount of risk that a system

administrator (or user) is willing to accept, and the type of adversary that one would

like protection against.
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Although the available resources differ for each attacker and his/her motivation, we

prefer to evaluate our methods using a conservative measure of how many resources a

somewhat motivated attacker would likely be able to obtain, so as to not overestimate

the success of our attack dictionaries. We assume that the attacker will use personal

resources and give up after two weeks. Although these assumptions do not model

all motivated attacker’s patience and resources, it is equally valid as any other fixed

point for the sake of discussion (to model an attacker who is much more motivated, a

much larger dictionary could be exhausted). It is important to keep in mind that an

attacker could easily have ten-thousand times more resources than what we assume

herein if they are sufficiently motivated to rent a botnet.

By 2008, it is likely that an average attacker will have access to at least 8 processors

(if you assume that the attacker and a friend will both own machines with the new

quad-core processors [28]). We assume that MD5 is applied before storing the target

passwords, and thus that checking a guess requires a single MD5 hash operation on

a block of ≤ 512 bits. Using an MD5 performance result of 3.66 cycles/byte for a

Pentium 3 800MHz processor [104] (scaled to 2.66GHz), and a 512 bit block size,

approximately 1.22 × 107 MD5 hash operations can be performed per second per

processor. We base our value of te on the approximate number of MD5 hashes that

can be performed by an attacker with 2 quad-cores (at 2.66GHz per processor) for 2

weeks. This results in te = 246.75.

To verify Class D1 and Class D2’s hypothesized status as weak password subspaces,

we determine the number of gud-passwords that fall within them from two user studies

[105, 146]. We declare a candidate subspace as weak if it contains at least the same

percentage most recently found to fall to a basic text dictionary attack (5%) [82].

Thus, our α = .05, meaning that out of a system of 20 users, we would expect one

password to be susceptible to the dictionary attack.

We define the success of our predictive model’s application to pure-recall graphical

passwords by whether it produces candidate weak password subspaces (such that they

contain fewer than te = 246.75 entries), and that through user studies, these candidate

password subspaces are shown to facilitate correctly guessing at least 5% (α = 0.05)

of passwords.
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5.5 Results for Applying Class D1 and D2 to DAS

Using our predictive modelling method of Section 4.2, we found two weak password

subspaces that we called Class D1b and Class D2. We called SD1b
and SD2 our ap-

plication of these classes to DASJ . We found these subspaces to be both small and

generable (satisfying properties 1 and 3 of Definition 1); using the convenient param-

eters of a 5× 5 grid and gud-passwords of at most length 12, we found SD1b
⊂ SD1 to

be 42 bits (cf. Table 5.1), SD2 to be 40 bits (cf. Figure 5.7), and SD1b
∩ SD2 to be 31

bits (cf. Figure 5.8). Two separate studies supported that they are all significant (sat-

isfying property 2). Nali et al. [105] found that 30% of gud-passwords would belong

to Class D1b, and 80% of gud-passwords would belong to Class D2. Tao [146] found

that 40% of gud-passwords belonged to SD1b
and 72% of gud-passwords belonged to

SD2 . These studies are described in further detail in Section 5.5.1, the limitations for

which are described in Section 5.5.2.

5.5.1 Supporting Evidence for SD1 and SD2

In this section, we discuss one reported study supporting the hypothesis that Classes

D1b and D2 are indeed weak password subspaces, and thus that the proposed graphical

dictionary attack strategy is likely to perform quite well from an attacker’s perspec-

tive, at least for the implementation discussed. We also discuss two other studies

that we do not rely upon, and although they are not necessary for our conclusions,

they are additional data points of interest. We discuss limitations of these three user

studies in Section 5.5.2.

A user study of 167 students was performed by Tao [146] on an implementation of

a variation of DAS called Pass-Go (see Section 3.2.2). We discuss how Pass-Go maps

to DASJ in Section 3.2.2. University students used the system to access their grades

for one course over a 4-month semester. The results were analyzed using SD1 and SD2

as proposed herein, and a third class that Tao defines as a subset of alphanumeric

characters and well-known symbols, which we call D3 (recall Section 5.2.4). The study

found that 40% of users chose gud-passwords that fell in our SD1b
, and when no stroke-

count restrictions were applied, 72% of users chose gud-passwords that fell in our SD2 .

Other findings of interest include that password creation was increasingly difficult
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(in terms of the password creation success rate) when more restrictive stroke-count

policies were applied (the most restrictive of which was to have at least 4 strokes),

and that 41% of users created passwords that fell into our class SD1a (only 1% more

than the 40% already in SD1b
), implying that global symmetry is significantly more

probable than pseudo-symmetry (recall Section 5.2.4). This study also supports our

expectation that many passwords will have no strokes of length 1; 51.5% of users

had passwords with no length-1 strokes. Tao’s subset of alphanumeric characters and

symbols (under specified temporal orders and lengths) was 35.9 bits in size, and 19%

of users chose passwords from this subset.

Of related interest, is another study that Tao reported; although we do not rely

on this study for support, we believe it is a related data point of interest. Tao posted

a web site where anyone could create and practice Pass-Go passwords, and found that

the results for this site (although yielding a study of smaller size and less controlled)

were in line with that of the longitudinal study of 167 students. Of the 57 practice

passwords created on this site, 37.5% fell into SD1b
and 67% fell into SD2 [146]. Also,

no additional passwords fell into SD1a beyond those in SD1b
, again showing a preference

for global symmetry.

Tao’s results are similar to Nali and Thorpe’s [105] informal paper-based user

study of 16 students. Although we do not rely on this study for support, it remains

another interesting data point. This study found that 45% of users chose symmetric

passwords, two-thirds of which were mirror symmetric (and thus would fall into class

SD1b
). It also found that 80% of users chose passwords composed of 1-3 strokes, and

with a definite tendency towards centering the password on the grid provided (56%

were perfectly centered; an additional 30% were centered about about a set of cells

on either side of the center grid lines).

5.5.2 Limitations of User Studies

It appears that the best (most reliable, and perhaps only) method to determine user

choice and behaviour for a given system is to deploy the system under investigation

in the field, and study the results from a variety of populations. However, as for most

user studies, those discussed in Section 5.5.1 only apply to a particular deployment
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environment, for a single user population. Thus, we discuss potential limitations of

these studies when applying their results to other deployment environments and/or

user populations.

The Pass-Go system of Tao [146] was used to protect course materials, includ-

ing assignment and lab marks. Tao reports, based on responses from a post-study

questionnaire, that 80% of users did not perceive this information to be sensitive and

stated that for this reason, they picked passwords that were easy or simple. Thus, it

is possible that if the system had protected information that was perceived to be sen-

sitive, some of these users might have created passwords they perceived to be “more

complex”.1 Without a secondary study of the same user population, it is unknown

whether these users would have created different passwords, and if so, in what way

they would differ (e.g., more strokes, less symmetry, longer passwords, and by what

degree). How users’ choice in user-drawn graphical passwords is affected by their

perception of the need for heightened security remains unanswered. Also, there are

differences in implementation detail between DAS and Pass-Go, such as the use of

indicators on the grid (in the form of stars and shaded cells) to help users navigate.

We note that these indicators were placed in a globally symmetric pattern on the grid,

which may have encouraged symmetric drawings. However, the star indicators alone

did not appear to increase the number of symmetric passwords; in Tao’s web-based

practice study, which did not use star indicators, the number of passwords starting

at either stars or corners was reduced (from 68% in the longitudinal study to 39%

in the web-based practice study), but the percentage of passwords in SD1 remained

approximately the same.

The study by Nali and Thorpe [105] examined initial user choice on a single

occasion, and as such did not account for the effect of password resets over time. Thus,

it is possible that if users had to remember their passwords, they would have created

(or reset) them differently. It is unknown how user-drawn graphical passwords change

in complexity over password resets. Also, as this study was performed on paper, it

may have resulted in different choices relating to the input device; for example, in

1However, Riley’s survey [134] on password habits indicates that 60% of users did not change
their text password complexity according to the security of the site; thus we might expect a similar
proportion to leave their graphical passwords unchanged for higher security sites.
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mouse-based systems, users might be less likely to choose passwords with fine detail

due to increased difficulty to draw such passwords with a mouse. The differences

between user-drawn graphical passwords created on different input devices remains a

question worth independent study. Finally, the sample size of this study was small

(16 users), and thus may not have been enough to obtain a representative distribution

of user choice, although we note the percentages of users choosing passwords in SD1

and SD2 are quite similar to those in Tao’s study.

5.6 Conclusion

Our predictive models identified two separate weak password subspaces for gud-passwords:

Class D1b and Class D2, of size 42 and 40 bits respectively under convenient parameter

choices. These two subspaces were found to contain 40% and 72% of gud-passwords

respectively from a large scale study [146]; of course, the results of this study are

subject to its limitations as discussed in Section 5.5.2.

Weak password subspaces naturally define a set of password rules, based on the

properties that allow them to be generable. We discuss the specific password rules

that should be applied based on our results for gud-passwords in Section 5.6.1. Also,

enhancements of the graphical password implementation can increase security. We

discuss these in Section 5.6.2.

5.6.1 Password Rules

Our work quantitatively supports earlier suggestions [72] that in order for gud-passwords

to be secure against off-line dictionary attacks, password rules and proactive checking

should be employed. Given our knowledge to date of weak password subspaces for

DASJ , we suggest the following as an initial set of gud-passwords rules. For other

variations on gud-passwords, stroke-count could be generalized to the smallest user-

created units whose input order matters. We expect this list will grow over time, as

more hypotheses of password complexity properties are developed and observed to

hold in practice.

1. Require a stroke-count of at least �Lmax

2
	.



73

2. Disallow passwords having global reflective (mirror) symmetry (e.g., Class D1b).

3. Require at least one stroke of length 1.

Under the proposed password rules, users must be able to recall asymmetric pass-

words with a larger number of short strokes. Usability might suffer with password

rules (in both memorability and repeatability), which might in turn lead to other

exploitable patterns in user choice. It is likely that mnemonic strategies would need

to be developed to aid memorability. Pass-phrases, i.e., sentences that help users

recall a password, are a text-based password mnemonic. An analogous mnemonic

proposed for graphical passwords is to create a story based on the picture(s) [34].

Any mnemonic strategy should be analyzed for new patterns it may encourage in

user choice; Kuo et al. [82] found that a 400,000 entry dictionary guessed 4% of text

passwords created using pass-phrases.

5.6.2 Implementation Enhancements

Implementation enhancements for text-based passwords can also be applied to graph-

ical passwords. DASJ passwords can be stored using a one-way hash, so could benefit

from hashing algorithms with an adaptable cost (e.g., see [128]) and/or that use

password stretching or repeated hashing of passwords (e.g., see [59]) to increase the

computational cost of guessing attacks. Also, the user can specify how long each

guess should take by using Boyen’s halting puzzles [18], although a usable integration

of this concept into the system may prove more of a challenge (recall discussion in

Section 2.3.2). “Salting” adds random data to the computation of each user’s pass-

word hash, and thus if any users have the same password, the hashes will be different.

Salting thus forces an attacker to compute a new hash for each password guess/user

combination, increasing the computational cost of guessing attacks against a set of

users.

For DAS, minor implementation enhancements can increase security (albeit typi-

cally at some cost in usability), e.g., additional user-selected characteristics of draw-

ings such as color, backgrounds, and textures. Dunphy et al. [44] found that the

effect of using different backgrounds behind the drawing grid reduces the number of
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passwords that would fall to Class D2 attacks (since this apparently increases both

the stroke-count and password length), but that over 40% of users would still choose

Class D1b passwords (the effect of which was not quantified).

The gud-password space could also be increased by increasing the area from which

the user can select a graphical password – in DAS, this could be achieved by increasing

the grid size. Unfortunately, we found that increasing the grid size from 5×5 to 10×10

only provides 5-20 extra bits for convenient parameter choices (see Figure 5.15, and

Tables 9.1-9.3 for the complete data set).
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Figure 5.15: The effect of grid size on bit-size of DASJ password space for a maximum
password length of 12 and selected values of X.

Another method that might increase security is to use a form of “zooming in”,

originally proposed for click-based schemes [14, 71]. One grid-based analogy to zoom-

ing in, grid selection [150], involves a user selecting a smaller “drawing grid” (on

which the password is later drawn) from a larger “selection grid”. However, to have

any confidence in this method, a (somewhat elaborate) user study involving a vari-

ety of implementation designs would be necessary to determine how much additional

entropy it might add, at what cost to usability.



Chapter 6

Application to Cued-Recall Graphical Passwords

6.1 Introduction

To further demonstrate our predictive modelling method, we apply it to a represen-

tative cued-recall graphical password scheme known as “PassPoints” (recall Section

2.4.2). We believe our results for PassPoints [151] can be applied to other click-

based graphical passwords (gcb-passwords), which require the user task of logging in

by clicking a sequence of points on a single background image. Other examples of

gcb-passwords include Picture Password [71], Blonder’s scheme [15], V-Go [120], and

visKey [139].

We detail the steps from Section 4.2 to create a predictive model for click-based

schemes in Section 6.2, and provide further details about its construction in Section

6.3. We describe our evaluation methodology in Section 6.4 and our results in Sec-

tion 6.5. We describe another (non-predictive) attack strategy against PassPoints

that achieved even better results in Section 6.6. Related results about hot-spots are

discussed in Section 6.7, although these results are not required to understand the

attacks presented herein. Concluding remarks are made in Section 6.8.

6.2 Predictive Model Creation

Here we provide further details for each step of applying our predictive modelling

method to the PassPoints scheme. The subsections herein follow the predictive model

steps outlined in Section 4.2.

6.2.1 User Tasks and Demand

The user task in a cued-recall graphical password scheme is to: (1) examine a pre-

sented background picture, (2) search for and locate the points on the image to click,

75



76

and (3) enter the set of click points in the same order as during password creation.

These tasks demand visual recall, or searching for and relocating a set of points on

the background image, which may be influenced by preferences for certain parts of

the image. These tasks also require remembering the input order of the set of points.

6.2.2 Other Relevant Information

Here we discuss relevant information relating to the user tasks and demand identified

in Section 6.2.1.

Relevant information on visual recall is any research on what properties of pieces

of images make them more memorable than others. The research on visual recall

reviewed in Section 5.2.2 suggests that due to the concreteness continuum, the places

in an image representing objects should be the easiest places to recall.

Cueing a user with a background image introduces other factors; there may be

parts of the image that people prefer. If we assume that users prefer (and will choose)

parts of an image that “stand out”, then research on human visual attention may be

relevant. There are two different categories of visual attention: bottom-up and top-

down. Bottom-up visual attention captures how attention is instinctively drawn to

the parts of a scene or image that are conspicuous. It is what draws us to look at the

unexpected or different parts of a scene, prioritizing them from the other consistent

parts. For example, if an image contains a large number of objects that are blue, and

only one is yellow, human attention will instinctively focus on the yellow object. Top-

down visual attention is task-dependent and based on cognitive, volitional control.

With a priori knowledge about what objects to look for, our attention is brought to

the parts of the scene containing those objects. For example, if a user decides that

people with dark hair are of interest for some reason, the user’s attention would shift

between each dark-haired person in the image.

Indeed, there is existing research in this area, and existing computational models

of “bottom-up” visual attention [67] have been shown to correlate with human visual

attention in images containing little “top-down” information [116]. Current top-down

visual attention models are created by training with labelled images as discussed

by Olivia et al. [110]. Since many assumptions are required about what top-down
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processes are used in this context to train such a visual attention model, we also

discuss another method of collecting information about the places that users prefer:

“human computation” [159], whereby other people are asked to choose click-points in

a separate context (e.g., in a game, lab, or other simplified setting).

Beyond the places users choose for click-points, visual recall research can tell us

something about how many pieces of visual information people can recall. In partic-

ular, it appears that people are better at recalling fewer pieces of visual information

(with a more dramatic decline after three pieces) [87], and tend to group those pieces

together in “chunks” if possible [30]. If users somehow relate their points to one an-

other (in essence, creating an algorithm to reproduce the password), they reduce the

number of distinct pieces of information to be recalled. Example relationships be-

tween points include patterns in the objects clicked (e.g., colour and/or shape) and

the order in which they are clicked.

6.2.3 Identify Complexity Properties

Motivated by the research discussed in Section 6.2.2, we propose the following:

Conjecture 3 Since users must relocate a point with precision, and people are more

likely to recall objects, a significant subset of users are likely to choose gcb-passwords

composed of points that represent small objects (or small, relocatable parts of an ob-

ject).

Conjecture 4 Since people are likely to prefer some areas of an image more than

others, the aggregate effect will likely be that a significant subset of users will choose

gcb-passwords composed of points that are more commonly preferred.

Conjecture 5 Points that are more commonly preferred can be defined by image

processing tools (e.g., models of visual attention), or points that other groups of people

prefer (as defined by popular points selected in a human-computed data set).

Another factor that could influence the complexity of a password is the relationship

between click-points that compose a password. Findings that people are better at

recalling fewer pieces of visual information [87] motivate us to propose Conjecture 6.
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Conjecture 6 Since people find it easier to recall fewer pieces of information, a

significant subset of users are likely to choose sets of points that are related by visual

similarity (e.g., in their shape, colour, or intensity), or follow a simple click-order

pattern (e.g., left to right).

These conjectures lead us to identify three complexity properties: the size of the

object underlying the click-point (the closer the object size is to the T-region size,

the lower the complexity), the degree of a click-point’s preference (higher preference

results in lower complexity), and the degree of relation between points (a stronger

relationship results in lower complexity).

6.2.4 Model Classes of Probable Passwords

For gcb-passwords, Conjectures 3, 4, 5, and 6 lead us to define a Class C1 password

(Definition 15), Class C2 password (Definition 16), and Class C3 password (Definition

17). Here, C is used to denote that these classes apply to click -based graphical

passwords (gcb-passwords). Of course, the passwords that fall within these classes

will differ depending on the background image, and the particular application of

these classes to a gcb-password scheme. We discuss Class C4 passwords in Section

6.2.4.

Definition 15 (Class C1 password). A Class C1 password is a gcb-password com-

posed of small parts of the image (i.e., no larger than the system’s T-region) that

users prefer, as defined by an image-processing based model of user choice.

Definition 16 (Class C2 password). A Class C2 password is a gcb-password com-

posed of small parts of the image (i.e., no larger than the system’s T-region) that

users prefer, as defined by popular points observed in a human-computed data set.

Definition 17 (Class C3 password). A Class C3 password is a gcb-password com-

posed of a sequence of points that follow a simple click-order pattern.

For example, a password that is composed of click-points that sweep from left to

right would be considered a Class C3 password. The size of the parts of the image
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underlying the points of a Class C3 password are irrelevant; here we only care about

the click-order pattern of the points, rather than what is underlying the points.

The Class C1 password space is composed of the set of encoded representations

of Class C1 passwords; these form a graphical dictionary (i.e., a Class C1 graphical

dictionary). Class C2 and Class C3 password spaces and Class C2 and Class C3

graphical dictionaries are defined analogously. We refer to a Class C2 dictionary as

being human-seeded (i.e., seeded with a human-computed data set).

As in Chapter 5, we believe these classes would be the basis of a prioritized

ordering of password guesses. We suggest that a clever attacker may prioritize a

multi-class graphical dictionary according to gcb-passwords with more probable click-

order patterns, and belonging to our classes as follows (see Figure 6.1):

1. Class C2 ∩ Class C3,

2. Class C2 − (Class C2 ∩ Class C3),

3. (Class C1 − Class C2) ∩ Class C3,

4. Class C3 − (Class C3 ∩ (Class C2 ∪ Class C1)),

5. Class C1 − (Class C1 ∩ (Class C2 ∪ Class C3)),

6. Full password space − (Class C1 ∪ Class C2 ∪ Class C3)

This ordering assumes that image processing based methods will not capture users

preferences as well as a human-computed data set. If an image processing based

method is found to accurately describe user preferences across many image types,

this ordering might be revisited. Each class might also be internally prioritized as

discussed in their respective sections, below.

Class C1 Dictionaries

For the Class C1 dictionary, we do not consider click-order patterns or dependencies

between points, but assume that each click-point is independent of the others, and

that the probability of a given password is defined only by the probability of each of its

points. One way to create a Class C1 dictionary is to use a model of visual attention,
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Figure 6.1: Illustrative relationship between Class C1, C2, and C3.

and prioritize it by assuming that more salient1 image locations (or combinations

thereof) are more likely to belong to a password. We use this general method to

create a Class C1 dictionary; we call our particular implementation SC1 .

Our image processing approach creates an ordering of points, from most to least

probable. We implement a variation of Itti et al.’s bottom-up model of visual attention

[67], such that it ranks a list of pixels according to their saliency, i.e., pixels that stand

out the most from their background (in terms of colour, intensity, and orientation).

We then create a bitmask of this list from the output of Harris corner detection [60];

the goal of this step is to isolate only those points that stand out and can be located

and clicked again with accuracy. The resulting corners are then ranked according to

their saliency as defined by the model of visual attention. For more details on this

method, see Section 6.3.

Class C2 Dictionaries

As with the Class C1 dictionary, we do not consider click-order patterns or dependen-

cies between points, but assume that each click-point is independent of the others,

and that the probability of a given password is defined only by the probability of each

1A salient point is one that visually “stands out” from its surroundings.
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of its points. A logical way to prioritize the Class C2 dictionary is to assume that

more commonly preferred image locations (or combinations thereof) are more likely

to belong to a password.

The observed frequencies of click-points from a human-computed data set creates

a ranking of points from most to least probable. We obtain our human-computed

data from the click-point data collected from a short-term in-lab user study. This

data is reduced into clusters (recall Section 2.4.2) according to a clustering algo-

rithm (see Section 6.3.2). The resulting clusters are then ranked according to their

size (the number of click-points, from the lab study data, that lie within the clus-

ter). We call our particular Class C2 dictionaries generated as described above SC2 .

This method represents a viable attack strategy, as human-computed data could be

obtained through a number of means (e.g., friends, paying as small number of peo-

ple, games, or restricting access to a popular website until the computation task is

complete). Obtaining human-computed data does have the disadvantage of requiring

more time than an image processing method as used for Class C1. For more details

on this method, see Section 6.3.

Class C3 Dictionaries

Class C3 dictionaries can consider any click-order pattern that a user might use to

relate his/her click points to one another. For example, this might include general

sweeping directions from left to right or right to left. We consider a small set of such

click-order patterns as subclasses of Class C3: DIAG (which considers gcb-passwords

composed of click points in a consistent horizontal and vertical direction; note this

includes straight lines as in Figure 6.2), HOR (which considers gcb-passwords com-

posed of click points in a consistent horizontal direction), VER (which considers

gcb-passwords composed of click points in a consistent vertical direction), CWCCW

(which considers gcb-passwords composed of click points in a consistent clockwise or

counter-clockwise direction). We prefix each of these subclasses with SC3- to denote

our particular implementation of these click-order patterns. More details on how we

generate each of these click-order patterns are given in Section 6.3.

Prior to examining a large population of real gcb-passwords we had no reason to
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believe that any of these click-order patterns will be more likely than another, and it

would seem reasonable to assume that such patterns will be influenced by patterns

in the image itself, such as the horizontal rows of cars shown in Figure 6.2. Thus to

prioritize a Class C3 dictionary, we suggest ordering the Class C3 subclasses based on

their size (until there is reason to believe that a certain click-order pattern would be

more likely).

Figure 6.2: Example Class C3-DIAG password.

Class C4 Dictionaries

Here we mention an additional class of graphical dictionaries: Class C4. Class C4

captures the concept of gcb-passwords composed of a sequence of points that are

“visually similar”. This can be considered another way of logically grouping the click-

points in a password, so that less information must be recalled. Example measures of

similarity between points include the shape of the objects (e.g., all license plates in

the cars image shown in Figure 6.2), or the colour of the objects (e.g., all red objects).

Thus, a Class C4 dictionary might be defined based on a particular image processing

measure (e.g., image segmentation [46] with similarity matching of segment shapes,

or by filtering out all but one colour at a time and using only the remaining points).

Although we believe that Class C4 (and possibly other classes) could be used as

part of a dictionary ordering (or as an optimization within Class C1, Class C2, or

Class C3 passwords), we do not pursue further details in this thesis.
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6.2.5 Estimating the Size of Classes

To estimate the size of our classes, we choose PassPoints as a representative scheme.

In general, we use the term SCX
to denote our particular implementation of Class CX

to PassPoints. For this analysis, we assume parameters similar to the original work

on PassPoints [164]: a 451× 331 image size, and an error tolerance of t = 9, and thus

a T-region of 19 × 19.2

We use the term SC1 to denote our implementation of Class C1 to PassPoints,

which is based on the ordering we create with our set of image processing tools

detailed in Section 6.3.1. There are other ways to apply Class C1 to PassPoints; one

other example is the method recently used by Dirik et al. [40] (recall Section 3.3.4),

which is a distinct implementation from our SC1 . We use the term SC2 to denote our

implementation of Class C2 to PassPoints. SC2 is based on the ordering we create with

a human-computed approach using a data set collected from an in-lab study. Further

details concerning the construction of SC1 , SC2 , and SC3 are provided in Section 6.3.

Following the relevant parts of the attack strategy from Section 6.2.4, we expect

that a PassPoints graphical dictionary would be prioritized in the following order:

1. SC2 ∩ SC3

2. SC2 - (SC2 ∩ SC3)

3. (SC1 - SC2) ∩ SC3

4. SC3 - (SC3∩ (SC1∪ SC2))

5. SC1 - (SC1 ∩ (SC2∪ SC3))

6. Full password space - (SC1∪ SC2∪ SC3).

The relationship between these sets is analogous to the relationship between their

parent classes in Figure 6.1. We approximate the size of password spaces SC1 , SC2 ,

and SC3 in Sections 6.2.6, 6.2.7, and 6.2.8. Since SC1 is was not found to be a weak

password space on all background images due to the number of passwords it correctly

2This was chosen to approximate the 20 × 20 tolerance square used by Weidenbeck et al. [164].
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guesses (see Section 6.5.2), we only consider the intersection of SC2 and SC3 in Section

6.2.9.

6.2.6 Approximate Size of Class C1 Graphical Dictionaries

The size of SC1 is defined by the lowest-ranked point that it includes. We include the

top one-third of all points found by our image processing tools (see Section 6.3.1 for

details), which gives us an alphabet size of 138. All 5-permutations of these top 138

points provides a 35 bit SC1 graphical dictionary. We also create another smaller SC1

dictionary by only including the top one-quarter of all points, giving an alphabet size

of 103, and a graphical dictionary of size 33 bits. As in Chapter 4, the number of bits

shown is the log2 of the number of entries in the dictionary.

6.2.7 Approximate Size of Class C2 Graphical Dictionaries

The size of SC2 is defined by the number of points available for use from the human-

computed data set, which can be further pruned by only considering those clusters of

at least a certain size. We use all points from our human-computed data set, since our

data set is small enough that pruning would produce a very small SC2 (particularly

for cars where most clusters in the data set were of size one). Table 6.1 gives our

results for SC2 for the two images we focus our analysis upon: cars and pool (see

Section 6.5, Figures 6.4a and 6.4b respectively). Our reasons for selecting these images

are discussed in Section 6.5; in short, they were selected to represent apparently

different levels of security. We give the name P Vu to the dictionary composed of all

5-permutations of the clusters calculated (using the clustering algorithm described in

Section 6.3.2) from the human-computed click-point data collected from u users. Here

P denotes a set of permutations, V denotes that clusters are used, and its subscript

denotes the number of users in the sample. See Section 6.3.2 for details of how this

data was collected and SC2 generated. With the goal of determining the number

of samples of human-computed data required to generate an effective dictionary, we

examine the average number of clusters, and thus dictionary size, of ten randomly

selected subsets of 25, 20, and 15 people from the total data sample collected.

Although we do not formally consider it part of SC2 , we also show results for
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PRu , where R denotes that only the raw click-points collected are used (i.e., the

alphabet is not reduced by using the clustering algorithm). The reason for including

PRu is to demonstrate the clustering effect for smaller user samples, and the effect

of using the clustering algorithm on both the size and significance of the resulting

dictionaries (recall Definition 1, property 2). In general, this dictionary may have

better significance, but will be much larger. Note that the bit-size of PRu is a slight

overestimate, as there are some combinations of points that would not constitute a

valid password, due to two or more points being within t = 9 pixels of each other. As

discussed in Section 6.3.2, the total number of users we have data for is u = 33 for

cars, and u = 35 for pool. Thus, the size of PRu for cars is P (165, 5) = 236.7 entries,

and for pool is P (175, 5) = 237.1 entries.

Set cars (u = 33) pool (u = 35)
m bitsize m bitsize

PRu 165 36.7 175 37.1
P Vu 104 33.4 77 31.1

PR25 125 34.7 125 34.7
P V25 85 31.9 59 29.2

PR20 100 33.1 100 33.1
P V20 72 30.6 52 28.2

PR15 75 30.9 75 30.9
P V15 56 28.8 41 26.4

Table 6.1: Bit-sizes of dictionaries using different sets. All subsets of users (after the first
two rows) are the average result of 10 randomly selected subsets of u = 15, 20, 25 lab-study
passwords. For rows 1 and 2, note that u = 33 and 35. m is the alphabet size, which defines
the dictionary bitsize. P Vu is our SC2 (other subscripts denote what our SC2 would have
been if generated from a smaller data set of that size); see text for descriptions of P V and
PR.

Table 6.1 shows how using clusters (P Vu) instead of raw click-point data (PRu)

reduces the size of the dictionary. A larger reduction in the number of clusters (see

column m) indicates that there are more click-points in the same T-region, i.e., there

are more hot-spots (recall Section 2.4.2), and/or larger clusters indicating these hot-

spots. It is interesting to note that when u = 15, pool achieves a 20% larger reduction

(from the number of click points to the number of clusters in column m) than that
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of cars: the same difference as when u = 20 and u = 25. This may indicate that

collecting data from as few as 15 people could provide as good an estimate of the

relative hot-spotting between images as collecting data from 33 or more people. For

a more detailed discussion of hot-spotting, see Section 6.7.

6.2.8 Approximate Size of Class C3 Graphical Dictionaries

For Class C3 graphical dictionaries, we calculate the size of three of the click-order

patterns discussed in Section 6.2.4: DIAG, HOR, and VER. The results are provided

in Table 6.2. For reference, the full password space is 43 bits. Note that these

dictionaries consider all possible permutations of T-regions that can be categorized

as having one of these click-order patterns, and thus it is image-independent.

Dictionary bitsize

DIAG 32.6
HOR 37.6
V ER 37.9

Table 6.2: Dictionaries that exploit click-order patterns.

The conditions used to define the size of these sets are provided in Section 6.3.

Although we can test a set of points for membership to CWCCW, and provide this

number in our combined results in Section 6.2.9, it is not clear to us how to efficiently

generate all gcb-passwords that belong to this set. Thus, we only consider CWCCW

as an optimization for a Class C2 dictionary.

The results in Table 6.2 for HOR and V ER are sensible when considering the

effect of permutations versus combinations. The full 43-bit password space considers

every 5-permutation of all possible click-points. For each combination of click-points,

the HOR and V ER click-order patterns consider at least two permutations out of

the 5! = 120 possible. If only one permutation for each combination of all possible

click-points were added to a dictionary, it would be of size 243

120
= 236. Considering

two permutations for each combination would double the number, resulting in a 37-

bit dictionary. The HOR and V ER dictionaries are slightly larger since there is

more than one combination when e.g., considering a straight horizontal line for the
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V ER dictionary (all permutations would be accepted). It is sensible that the DIAG

dictionary has considerably fewer elements since many combinations of points would

not have any permutations that would qualify for membership (e.g., consider a zig-zag

formation).

6.2.9 Approximate Size of Combined Class C2 and C3 Dictionaries

To demonstrate the combined effect of Class C2 and Class C3, we combine SC2 (more

specifically, P Vu from Table 6.1) with the four subsets of SC3 to obtain the results in

Table 6.3.

Set cars (u = 33) pool (u = 35)
m bitsize m bitsize

P Vu 104 33.4 77 31.1
P Vu∩ SC3-DIAG 104 22.7 77 20.7
P Vu∩ SC3-HOR 104 28.0 77 25.9
P Vu∩ SC3-V ER 104 28.4 77 26.0
P Vu∩ SC3-CWCCW 104 27.8 77 25.7

Table 6.3: Dictionaries built from SC2 ∩ SC3 . m is the alphabet size, and all human-
computed click-point data collected (see Section 6.3.2) is used.

Table 6.3 shows how despite having different alphabet sizes (m = 104 for cars,

and m = 77 for pool), each click-order pattern reduces the dictionary sizes by approx-

imately the same number of bits as when applied to the full password space (recall

Section 6.2.8): approximately 5 bits for both the HOR and V ER dictionaries, and

approximately 10-11 bits for the DIAG dictionary. We see here that the CWCCW

click-order pattern reduces the dictionary sizes by approximately 5.5 bits.

6.3 Model Details

Here we discuss the details of how we estimated the sizes of Class C1, Class C2,

and Class C3 graphical dictionaries. We discuss how we generate Class C1 (image

processing tools) in Section 6.3.1, Class C2 (human-computed data set) in Section

6.3.2, and Class C3 in Section 6.3.3. Combining (i.e., examining the intersection of)
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Class C2 and Class C3 is simply a matter of checking those 5-permutations in Class

C2 for whether they conform to a click-order pattern in Class C3.

6.3.1 Class C1 Graphical Dictionaries (Image Processing)

Here we discuss how we create a Class C1 attack dictionary for gcb-passwords by

automated image processing means. Such automated methods should be easier for an

attacker to launch than an attack using a Class C2 dictionary. We create this attack

dictionary, which we call SC1 , by modelling user choice using a set of image processing

methods and tools detailed herein.

To begin, we identify a candidate click-point to be a point that is salient, and

identifiable with precision within the system’s error tolerance. We estimate candidate

click-points (CCPs) by implementing a variation of Itti et al.’s bottom-up model of

visual attention (VA) [67], and combining it with Harris corner detection [60].

Corner detection picks out the areas of an image that have variations of intensity

in horizontal and vertical directions; thus we expect it should provide a reasonable

measure of whether a point is identifiable by human users. Itti et al.’s VA determines

areas that stand out from their surroundings, i.e., have higher saliency. Briefly, VA

calculates a saliency map of the image based on 3 channels (color, intensity, and

orientation) over multiple scales. The saliency map is a grayscale image whose brighter

areas (i.e., those with higher intensity values) represent more conspicuous locations.

A viewer’s focus of attention should theoretically move from the most conspicuous

locations (represented by the highest intensity areas on the saliency map) to the least.

We assume that users will prefer, and are more likely to choose click-points from areas

which draw their visual attention.

We implemented a variation of VA and combined it with Harris corner detection

to obtain a prioritized list of candidate click-points (CCP-list) as follows.

1. Calculate a VA saliency map (see Fig. 6.3(b)) using slightly smaller scales than

Itti et al. [67] (to reflect our interest in smaller image details). The higher-

intensity pixel values of the saliency map reflect the most “conspicuous” (and

distinguishable) areas.



89

2. Calculate the corner locations using the Harris corner detection function as

implemented by Kovesi [79]3 (see Fig. 6.3(c)).

3. Use the corner locations as a bitmask for the saliency map, producing what we

call a cornered saliency map (CSM). CSM points are then the remaining pixels

with non-zero intensity values.

4. Compute an ordered CCP-list of the highest to lowest intensity-valued CSM

points. Similar to the focus-of-attention inhibitors used by Itti et al., we inhibit

a CSM point (and its surrounding T-region) once it has been added to the

CCP-list so it is not chosen again (see Fig. 6.3(d)). The CCP-list is at least

as long as the alphabet size (414), but is a prioritized list, ranking points from

(the hypothesized) most to least likely.

Finally, we generate all 5-permutations of the top-ranked 1
3

entries in the CCP-

list, which creating a 35-bit dictionary. We repeat the same method to generate two

other dictionaries: a 33-bit dictionary using the top-ranked 1
4

entries in the CCP-list,

and a 28-bit dictionary using the top-ranked 1
8

entries in the CCP-list. Our reason

for choosing a set of fractions of the CCP-list was to see how small an alphabet (if

successful) was necessary to model user choice.

6.3.2 Class C2 Graphical Dictionaries (Human-Seeded)

Here we describe how we calculate our Class C2 graphical dictionary; we call this

implementation SC2 . We collect data from users in a separate simplified context:

an in-lab, short-term study as described below. We use the data collected in this

lab study as input to the clustering algorithm described further below to calculate

clusters. All permutations of these clusters are then added to our SC2 dictionary,

ordered by decreasing probability. The probability of each permutation of clusters is

defined by the product of its observed cluster probabilities (see further below for how

the observed probability of a cluster is defined).

3As harris(image, 1, 1000, 3)
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(a) Original image [163]. (b) Saliency map.

(c) Corner detection output. (d) Cornered saliency map (CSM) after
inhibiting top 51 CCP-list points.

Figure 6.3: Illustration of our method of creating a CCP-list (best viewed electronically).

Lab Study

Here we report the details of a university-approved 43-user study of click-based graph-

ical passwords in a controlled lab environment. Each user session was conducted in-

dividually and lasted about one hour. Participants were all university students who

were not studying (or experts in) computer security. Each user was asked to create a

click-based graphical password on 17 different images (most of these are reproduced

in Figures 6.4 and 9.1; others are available from the author). Four of the images are

from a previous click-based graphical password study by Wiedenbeck et al. [163]; the

other 13 were selected to provide a range of values based on two image processing

measures that we expected to reflect the amount of detail: the number of segments



91

found from image segmentation [46] and the number of corners found from corner de-

tection [60]. Seven of the 13 images were chosen to be those we “intuitively” believed

would encourage fewer hot-spots; this is in addition to the four chosen in earlier re-

search by others [163] using intuition (no further details were provided on their image

selection methodology).

We implemented a web-based study. Each user was provided a brief explanation of

what click-based graphical passwords are, and given two images to practice creating

and confirming such passwords. To keep the parameters as consistent as possible

with previous usability experiments of such passwords [164], we used 5 click-points

for each password, an image size of 451×331 pixels, and a 19×19 pixel square of error

tolerance. Wiedenbeck et al. [164] used a tolerance of 20 × 20, allowing 10 pixels of

tolerated error on one side and 9 on the other. To keep the error tolerance consistent

on all sides, we approximate this error tolerance using 19× 19. Users were instructed

to choose a password by clicking on 5 points, with no two the same. Although the

software did not enforce this condition, subsequent analysis showed that the effect on

the resulting cluster sizes was negligible for all images except pcb; for more details, see

caption of Figure 6.10. We did not assume a specific encoding scheme (e.g., robust

discretization [13] or other grid-based methods); the concept of hot-spots and user

choice of click-points is general enough to apply across all encoding schemes. To allow

for detailed analysis, we store and compare the actual click-points.

Once the user had a chance to practice a few passwords, the main part of the

experiment began. For each image, the user was asked to create a click-based graphical

password that they could remember but that others will not be able to guess, and

to pretend that it is protecting their bank information. After initial creation, the

user was asked to confirm their password to ensure they could repeat their click-

points. On successful confirmation, the user was given 3D mental rotation tasks

[123] as a distractor for at least 30 seconds. This distractor was presented to remove

the password from their visual working memory, and thus simulate the effect of the

passage of time. After this period of memory tasks, the user was provided the image

again and asked to log in using their previously selected password. If the user could

not confirm after two failed attempts or log in after one failed attempt, they were
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permitted to reset their password for that image and try again. If the user did not

like the image and felt they could not create and remember a password on it, they

were permitted to skip the image. Only two images had a significant number of

skips: paperclips and bee. This suggests some passwords for these images were not

repeatable, and we suspect our results for these images would show lower relative

security in practice.

To avoid any dependence on the order of images presented, each user was presented

a random (but unique) shuffled ordering of the 17 images used. Since most users did

not make it through all 17 images, the number of graphical passwords created per

image ranged from 32 to 40, for the 43 users. Two users had a“jumpy”mouse, but we

do not expect this to affect our present focus – the location of selected click-points.

This short-term study was intended to collect data on initial user choice; although

the mental rotation tasks work to remove the password from working memory, it

does not account for any effect caused by password resets over time due to forgotten

passwords. For this reason, we use the long-term field study (Section 6.5.1) which

does account for this effect, as the primary data set for testing the success of our

graphical dictionaries.

Clustering Algorithm

To calculate clusters (the size of which defines hot-spots) based on any user data set

of click-points, we assign all of the observed user click-points to clusters as follows.

Let R be the raw (unprocessed) set of click-points, M a list of temporary clusters,

and V the final resulting set of clusters.

1. For each ck ∈ R, let Bk be a temporary cluster containing click-point ck. Tem-

porarily assign all user click-points in R within ck’s T-region to Bk. Add Bk to

M .

2. Sort all clusters in M by size, in decreasing order.

3. Greedily make permanent assignments of click-points to clusters as follows. Let

B� be the largest cluster in M . Permanently assign each click-point ck ∈ B� to

B�, then delete each ck ∈ B� from all other clusters in M . Delete B� from M ,

and add B� to V . Repeat until M is empty.
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This process determines a set V of (non-empty) clusters and their sizes. We then

calculate the observed “probability” pj (based on our data set) of the cluster j be-

ing clicked, as cluster size divided by total clicks observed. The final SC2 dictionary

contains all 5-permutations of the final clusters in V (i.e., P V in our notation). The

probability of each 5-permutation in P V is then defined by the product of the prob-

ability of its 5 composite clusters.

6.3.3 Class C3 Graphical Dictionaries

We count all Class C3 passwords by using the centers of all T-regions in the entire

alphabet space. Our base set of T-region centers are aligned such that their T-

regions do not overlap, meaning that they begin at (10, 10), and are in subsequent

increments of the T-region size (19). Only those 5-permutations whose click-points

(xi, yi), i = 1, 2, . . . , 5 follow one of the following click-order pattern conditions are

added to that particular dictionary:

• HOR: LR or RL, where LR = (x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5) and RL = (x1 ≥ x2 ≥
x3 ≥ x4 ≥ x5).

• VER: TB or BT, where TB = (y1 ≤ y2 ≤ y3 ≤ y4 ≤ y5) and BT = (y1 ≥ y2 ≥
y3 ≥ y4 ≥ y5).

• DIAG: LR and (TB or BT), or RL and (TB or BT).

• CWCCW: All sequences of three consecutive points are in the same direction

(clockwise or counter-clockwise as computed as in [16]), and the sum of the

angles between these sequences of three consecutive points is no greater than

360 degrees.

In words, HOR is a horizontal sweep from right to left or left to right; VER is

a vertical sweep from top to bottom or bottom to top; DIAG is a sweep in both

a certain horizontal and vertical direction; and CWCCW is either a clockwise or

counter-clockwise, non-overlapping sweep.

Note that in each of the listed conditions, equality takes the error tolerance into

account; for example, if x1 to x4 all follow a left to right click-order pattern, and then
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x5 ≥ x4− t, the entire password will be considered to have a HOR click-order pattern.

We call our implementation of Class C3 dictionaries SC3 , and use SC3- to prefix each

of the dictionaries described above (e.g., SC3-DIAG).

6.4 Evaluation Methodology

Here we discuss our method to measure which of our dictionaries qualify as weak

password subspaces for the PassPoints scheme. To do so, we must define thresholds

for how much risk we are willing to accept (i.e., α in Definition 1), and the resources

of an attacker we expect protection from (i.e., te in Definition 1). Of course, these

thresholds are not fixed as they are dependent upon the amount of risk that a system

administrator (or user) is willing to accept, and the attackers that he/she would like

protection against. As in Chapter 5, we choose conservative thresholds so as to not

overestimate the success of our attack dictionaries, but we also stress that attackers

could easily have ten-thousand times more resources than what we assume herein if

they are sufficiently motivated to rent a botnet.

The full password space for PassPoints using a background image of size 451×331

and a 19 × 19 T-region is only 43 bits. Thus, if we use the same threshold value

of 46.75 bits as for pure-recall graphical passwords in Section 5.4, the full space

would immediately qualify as a candidate weak password space. Clearly, if PassPoints

were to be deployed with these parameters and remain reasonably secure against

offline guessing attacks, it must somehow increase the computational expense of each

offline guess. One way to increase the cost of a guess is through increasing the cost

of the hashing method used for storage and comparison (e.g., using the methods

from Section 2.3.2). If we assume that a higher-cost hashing method is used, we

must adjust our value of te. We assume that if a password scheme is to replace

text passwords, it should be at least as computationally expensive to exhaust as the

full 53-bit password space of 8-character text passwords (using upper and lowercase

characters, numbers, and the 34 special characters available on a keyboard). For the

time to exhaust a 53-bit text password space to equal the time to exhaust a 43-bit

PassPoints password space, PassPoints might use a hashing method that is 210 = 1024

times more computationally expensive. Using the same MD5 measure as Section 5.4,
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this means that approximately 12000 MD5 hashes could be performed per second on

a 2.66GHz processor. Using the same attacker resource assumptions as in Section

5.4, that the attacker is using personal resources, which by 2008 could easily be two

quad-core machines with 2.66GHz processors (for a total of eight processors), and

that the attacker will give up after 2 weeks, provides te = 233.75.

To verify Class C1, Class C2, and Class C3’s hypothesized status as weak password

subspaces, we determine the number of gcb-passwords that fall within them from two

separate user studies; our primary data set is from a long-term field study using

two different background images (see Section 6.5.1), and for Class C1, we also use the

short-term, single session lab study using 17 different background images. We use data

from the lab study as a human-computed data set to generate Class C2 dictionaries,

and use the data from the field study to test the success of these dictionaries. We

declare a candidate subspace as weak if it contains at least the same percentage most

recently found to fall to basic text dictionary attack (5%) [82]. Thus, our significance

threshold α = .05, meaning that out of a system of 20 users, we would expect one

account to be compromised.

We define the success of our predictive model’s application to gcb-passwords by

whether it produces candidate weak password subspaces (such that they contain fewer

than te = 233.75 entries), and that through user studies, these candidate password sub-

spaces are shown to facilitate correctly guessing at least 5% (α = 0.05) of passwords.

6.5 Results for Applying Class C1, C2, and C3 to PassPoints

Our predictive models found two weak password subspaces that we call SC2 and SC3-

DIAG. Our SC1 (when using the 33 bit dictionary) creates a weak password subspace

for some images, but not all. We found the SC2 and SC3-DIAG subspaces to be both

small and generable (satisfying properties 1 and 3); using the parameters of 5 clicks,

a 19 × 19 T-region, and an image size of 431 × 331, we found SC2 to be 31.1 bits

for the pool image and 33.4 bits for the cars image, SC3-DIAG to be 32.6 bits, and

SC2∩ SC3-DIAG to be 20.7 bits for the pool image and 22.7 bits for the cars image.

Our field study supports that they are significant (satisfying property 2); we found

that 20-36% of gcb-passwords would belong to SC2 , 26-46% of gcb-passwords would
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belong to SC3-DIAG, and 8-10% would belong to SC2 ∩ SC3-DIAG. The field study

used to evaluate our dictionaries is described in further detail in Section 6.5.1, and

its limitations are discussed in Section 6.5.6. The detailed results for applying each

of our dictionaries are discussed in Sections 6.5.2–6.5.5.

6.5.1 Supporting Evidence: Field Study

Here we describe a 7-week or longer (depending on the user), university-approved

field study of 223 user accounts on two different background images. We collected

click-based graphical password data to evaluate the security of this style of graphical

passwords against various attacks. We use the entropy and expected guesses measures

from our lab study to choose two images that would apparently offer different levels

of security (although both are highly detailed): pool and cars (see Figure 6.4). The

lab study showed that the pool image had a medium amount of clustering (cf. Fig.

6.15 in Section 6.7), while the cars image had nearly the least amount of clustering

among the 17 images tested. Both images had a low number of skips in the lab

study, indicating that they did not cause problems for users with password creation.

We chose the cars image to give this scheme the best chance we could in terms of

anticipated security.

(a) cars (originally from [19]). (b) pool (originally from [163, 164]).

Figure 6.4: Images used in field study.

We implemented a web-based version of PassPoints, used by three first-year un-

dergraduate classes: two were first year courses for computer science students, while
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the third was a first year course for non-computer science students enrolled in a sci-

ence degree. The students used the system for at least 7 weeks to gain access to

their course notes, tutorials, and assignment solutions. For comparison with previous

usability studies on the subject, and our lab study, we used an image size of 451×331

pixels. After the user entered their username and course, the screen displayed their

background image and a small black square above the image to indicate their toler-

ance square size. For about half of users (for each image), a 19 × 19 T-region was

used, and for the other half, a 13 × 13 T-region.4 The system enforced that each

password had to be 5 clicks and that no click-point could be within t = 9 pixels of

another (vertically and horizontally). To complete initial password creation, a user

had to successfully confirm their password once. After initial creation, users were

permitted to reset their password at any time using a previously set secret question

and answer.

Users were permitted to login from any machine (home, school, or other), and

were provided an online FAQ and help. The users were asked that they keep in mind

that their click-points are a password, and that while they will need to pick points

they can remember, they should not pick points that someone else will be able to

guess. Each class was also provided a brief overview of the system, explaining that

their click-points in subsequent logins must be within the tolerance shown by a small

square above the background image, and that the input order matters. We only

use the final passwords created by each user that were demonstrated as successfully

recalled at least one subsequent time (i.e., at least once after the initial create and

confirm). We only consider these final passwords in order to have some confidence

that the passwords we analyze have some degree of memorability. We also only use

data from 223 out of 378 accounts, as this was the number that provided the required

consent. These 223 user accounts map to 189 distinct users as 34 users in our study

belonged to two classes; all but one of these users were assigned a different image

for each account, and both accounts for a given user were set to have the same error

tolerance. Of the 223 user accounts, 114 used pool and 109 used cars as a background

image.

4Analysis showed little difference between the points chosen for these different tolerance groups.
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Using our clustering algorithm (recall Section 6.3.2), we created a visualization of

the data collected, which illustrates the hot-spots, shown in Figure 6.5. The small

red dots represent single click-points, and the halos (i.e., the transparent larger red

circles) have size proportional to the number of underlying clicks (similar to popula-

tion diagrams). For further discussion of this hot-spotting and its relationship to the

hot-spotting from the lab study, see Section 6.7.

(a) cars (originally from [19]). (b) pool (originally from [163, 164]).

Figure 6.5: Observed clustering (field study). Halo diameter is 5 times the number of
underlying clicks.

6.5.2 Class C1 (Image Processing) Dictionary Results

We evaluated the performance of SC1 using the data from both the lab and field user

studies. We also use the lab study for evaluating our results here, as it provides us

with a larger set of images to evaluate our image processing tools against.

We first examined how well the first half (top 207) of the CCP-list overlaps with the

observed high-probability clusters from our lab user study (i.e., those clusters of size

at least 5). We found that this half-alphabet contained all high-probability clusters

on the icons, faces, and cars images, and most of the high-probability clusters on 11

of the 17 images. Most of the images that our model performed poorly on appeared

to be due to the saliency map algorithm being overloaded with too much detail (pcb,

citymap-gr, paperclips, smarties, and truck images). The other image on which this

approach did not perform well (mural) appears to be due to the corner masking in

step (3); the high probability points were centroids of circles.
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To evaluate how well the CCP-list works at modelling users’ entire passwords

(rather than just a subset of click-points within a password), we used the top ranked

one-third of the CCP-list values (i.e., the top 138 points for each image) to build a

graphical dictionary and carry out a dictionary attack against the observed passwords

from both user studies (i.e., on all 17 images in the lab study, and the cars and pool

images again in the field study). We found that for some images, this 35-bit dictionary

was able to guess a large number of user passwords (30% for the icons image and 29%

for the philadelphia map image). For both short and long-term studies, our 35-bit

SC1 guessed 9.1% of passwords for the cars image. Our 33-bit SC1 (built from the

top 103 ranked CCP-list alphabet) correctly guessed 27% of passwords for icons and

20% for philadelphia, but did not guess any for 9 out of 17 images. For the field

study, this dictionary guessed 5.5% of passwords for cars, but none for pool. A 28-bit

SC1 (built from the top 51 ranked CCP-list alphabet) correctly guessed 8 passwords

(22%) from the icons image and 6 passwords (17%) from the philadelphia image, but

did not guess any for 15 out of 17 images (thus no table is shown).

Results of these automated graphical dictionary attacks are summarized in Tables

6.4 and 6.5.

Tables 6.4 and 6.5 show that our SC1 is a weak password subspace for some images,

but not all images. Using the 35-bit SC1 , only 10 of the 17 images from the lab study,

and only one of the two images from the field study, have at least 5% of passwords

guessed. Using the 33-bit SC1 (which using our methodology described in Section

6.4 defines a candidate weak password subspace), only 4 of the 17 images from the

lab study, and only one of the two images from the field study, have at least 5% of

passwords guessed.

These results imply that on some images, an attacker performing an automated

attack is likely to be able to significantly cut down his search space. This method

also seems to perform well on the images for which the visual attention model made

more definite decisions – the saliency map shows a smaller number of areas standing

out, as indicated visually by a generally darker saliency map with a few high-intensity

(white) areas. An attacker interested in any one of a set of accounts could go after

accounts using a background image that the visual attention model performed well
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Image passwords passwords
guessed guessed

(lab study) (field study)

1. paperclips 2/36 (5.5%) –
2. cdcovers 2/35 (5.7%) –
3. philadelphia 10/35 (28.6%) –
4. toys 2/39 (5.1%) –
5. bee 1/40 (2.5%) –
6. faces 0/32 (0.0%) –
7. citymap-nl 1/34 (2.9%) –
8. icons 11/37 (29.7%) –
9. smarties 5/37 (13.5%) –
10. cars 3/33 (9.1%) 10/109 (9.1%)
11. pcb 3/36 (8.3%) –
12. citymap-gr 0/34 (0.0%) –
13. pool 1/35 (2.9%) 2/114 (0.9%)
14. mural 1/36 (2.8%) –
15. corinthian 3/35 (8.6%) –
16. truck 1/35 (2.9%) –
17. tea 2/38 (5.3%) –

Table 6.4: Passwords correctly guessed (using a 35-bit SC1 dictionary based on a CCP-list).
The number of target passwords is different for most images (32 to 40 for the lab study).
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Image passwords passwords
guessed guessed

(lab study) (field study)

1. paperclips 0/36 (0.0%) –
2. cdcovers 0/35 (0.0%) –
3. philadelphia 7/35 (20.0%) –
4. toys 1/39 (2.6%) –
5. bee 1/40 (2.5%) –
6. faces 0/32 (0.0%) –
7. citymap-nl 0/34 (0.0%) –
8. icons 10/37 (27.0%) –
9. smarties 2/37 (5.4%) –
10. cars 1/33 (3.0%) 6/109 (5.5%)
11. pcb 0/36 (0.0%) –
12. citymap-gr 0/34 (0.0%) –
13. pool 0/35 (0.0%) 0/114 (0.0%)
14. mural 0/36 (0.0%) –
15. corinthian 3/35 (8.6%) –
16. truck 0/35 (0.0%) –
17. tea 1/38 (2.6%) –

Table 6.5: Passwords correctly guessed (using a 33-bit SC1 dictionary based on a CCP-list).
The number of target passwords is different for most images (32 to 40 for the lab study).
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on. The background images could be obtained for analysis by entering known user

IDs.

In essence, this method achieves a reduction (by leaving out some “less likely”

points) from a 43-bit full password space to a 35 or 33-bit dictionary that is successful

on some images. The 43-bit full password space is the proper base for comparison

here, since an actual attacker with no a priori knowledge must consider all T-regions

in an image. However, we believe this SC1 dictionary could be improved through a

few methods. The images that it performed poorly on appeared to be due to failure

in creating a useful visual attention model saliency map. The saliency maps seem to

fail when there are no areas that stand out from their surroundings in the channels

used in saliency map construction (color, intensity, and orientation). Varying some

parameters involved in the saliency map creation (e.g., the scales used for defining

centers and surrounds, or the weighting applied to intermediate maps for the final

linear recombination) might lead to better results. Further, centroids of objects that

“stand out” to a user will not be included in this model (as only corners are included);

adding object centroids to the bitmask is thus an avenue for improvement. Dirik et

al. [40] (recall Section 3.3.4) use centroids in their work, but adding object centroids

to our bitmask would not result in an equivalent method, as theirs is not based on the

saliency map from Itti et al.’s model of bottom-up visual attention [67]. Instead, they

describe their own algorithm that involves differences in colour and intensity between

segments.

6.5.3 Class C2 (Human-Seeded) Dictionary Results

We evaluate the performance of SC2 using the data collected in the field study. Table

6.6 shows the number of passwords guessed after applying SC2 . Recall that PRu is a

dictionary containing all 5-permutations of the raw click-points collected from u users,

and P Vu contains all 5-permutations of the clusters calculated from the click-points

collected from u users. We only formally consider P V as SC2 .

The results in Table 6.6 shows that although the clustering algorithm reduces

the size of the dictionary, it also reduces its significance. Despite this reduction in

significance, these dictionaries still guess a large number of passwords (20-36% when
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all users are used). Table 6.6 also shows the effect of reducing the number of people

for creating a human-computed data set: as expected, it also reduces the significance

of the dictionary generated, but as few as 15 people can generate enough information

to guess 11-23% of passwords (on average).

Set cars (u = 33) pool (u = 35)
bit- # passwords bit- # passwords
size guessed out of 109 size guessed out of 114

avg min max avg min max

PRu 36.7 37(34%) † † 37.1 59(52%) † †
P Vu 33.4 22(20%) † † 31.1 41(36%) † †
PR25 34.7 24(22%) 9(8%) 35(32%) 34.7 42(37%) 29(25%) 56(49%)
P V25 31.9 21(19%) 7(6%) 27(25%) 29.2 34(29%) 19(17%) 47(41%)

PR20 33.1 22(20%) 8(7%) 32(29%) 33.1 35(31%) 24(21%) 55(48%)
P V20 30.6 17(16%) 8(7%) 30(28%) 28.2 28(25%) 18(16%) 43(38%)

PR15 30.9 14(13%) 4(4%) 25(23%) 30.9 30(27%) 20(18%) 45(39%)
P V15 28.8 12(11%) 4(4%) 24(22%) 26.4 26(23%) 14(12%) 43(38%)

Table 6.6: Dictionary attacks using different sets. All percentages in the table (after the
first two rows) are the result of 10 randomly selected subsets of u = 15, 20, 25 short-term
study user passwords. For rows 1 and 2, note that u = 33 and 35. See text for descriptions
of P V and PR. †The first two rows use all data from the short-term study to seed a single
dictionary, and as such, there are no average, max, or min values to report.

The most striking result shown is that initial password choices harvested from 15

users, in a setting where long term recall is not required, can be used to generate (on

average) 23% of user passwords for pool (see P V15). As we expected, cars was not as

easily attacked as pool (guessing on average 11% for P V15); more user passwords are

required to seed a dictionary that achieves similar success rates (see P V25).

Formally, we consider our Class C2 dictionary to be P V (i.e., when clusters are

used). We can place an ordering on the Class C2 dictionary such that the passwords

are ordered from most to least probable (as defined by the probabilities of each cluster

in the password). We further examine the cumulative distribution function (CDF) of

P Vu for each image, as shown in Figure 6.6.

Figure 6.6 illustrates how much more effective the SC2 dictionary is for pool : about

10% of passwords are guessed in the first 10000 guesses, and 5% are guessed within the
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Figure 6.6: CDF of SC2 (i.e., P Vu) for pool and cars. The total number of passwords in
the field study password database is 109 for cars and 114 for pool.

first 2000 guesses. In contrast, the SC2 dictionary for cars guesses 10% of passwords

only after over 109 guesses, and 5% after over 4 × 108 guesses. This is likely due to

the low amount of clustering we observed in the data collected in the lab study on

cars, leading to most clusters having the same probability, producing a less optimal

ordering.

In Figure 6.6 (and in later CDF figures), it appears that some guesses match a

large number of passwords. In this attack, a particular ordering of a combination

of five click-points is not given a higher priority over another. Thus, we only report

the number of successful guesses for a combination of points after having guessed all

120 permutations, meaning that when a guess appears to be particularly popular, it

indicates the combination of points is popular, not necessarily a single permutation.

All permutations are guessed in this attack, we simply choose to report the results

after all permutations have been guessed.

6.5.4 Class C3 Dictionary Results

We evaluate the performance of SC3 using the data collected in the field study. Table

6.7 shows the number of passwords guessed after applying SC3 for various click-order
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patterns. Recall Section 6.2.4 for a description of each of the click-order patterns

shown.

Dictionary cars pool
bitsize # passwords bitsize # passwords

guessed guessed

DIAG 32.6 50/109 (45.9%) 32.6 30/114 (26.3%)
HOR 37.6 65/109 (59.6%) 37.6 53/114 (46.5%)
V ER 37.9 71/109 (65.1%) 37.9 39/114 (34.2%)
CWCCW † 8/109 (7.3%) † 13/114 (11.4%)

Table 6.7: SC3 dictionary attack results using various click-order patterns for all T-regions.
†CWCCW would take many years to calculate the size of (for all T-regions).

The most striking result in Table 6.7 is that the DIAG click-order pattern, which

is the smallest SC3 dictionary, guesses almost 46% of passwords for cars, and 26% for

pool ; this result shows that SC3-DIAG is more significant than that of SC2 . These

results also give some insight as to which click-order patterns are most popular, and

how much these click-order patterns can differ depending on the image. For example,

the DIAG, HOR, and V ER click-order patterns are much more popular in cars

than pool, which is sensible given that cars depicts cars parked in straight rows. It

is interesting that despite few obvious straight-line structures in pool (aside from the

pillars on the left hand side), the DIAG, HOR, and V ER patterns are all still quite

popular. These results also show that CWCCW only guesses 7-11% of passwords,

showing that this click-order pattern is the least popular of those examined.

Overall, the success rates observed in Table 6.7 suggest the following as the best

attack ordering within SC3 : DIAG, HOR, V ER, CWCCW . It also suggests that

the DIAG dictionary is the weakest subspace of all those considered in SC3 .

6.5.5 Combined Class C2 and C3 Dictionary Results

We evaluate SC2 ∩ SC3 using the data collected in the field study. To initiate explo-

ration of combining these two classes, we begin by examining the effect of intersecting

SC3 with SC2 (when u = 15, i.e., P V15). For each image, we select one P V15 dictionary

to intersect with SC3 . This dictionary is one of the ten randomly selected P V subsets
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that were averaged (results of this average are in Table 6.6). We selected the dictio-

nary whose guessing success was closest to the average reported in Table 6.6. The

success rate that these dictionaries achieve (before applying click-order patterns) is

provided in the first row of Table 6.8.

cars image pool image
Click-order pattern # passwords dictionary # passwords dictionary

guessed of 109 size (bits) guessed of 114 size (bits)

P V15 (with no pattern) 13 (12%) 29.2 22 (19%) 27.1

P V15∩ SC3-HOR 11 (10%) 23.8 19 (17%) 22.0
P V15∩ SC3-V ER 12 (11%) 24.4 15 (13%) 21.9
P V15∩ SC3-CWCCW 0 (0%) 24.0 4 (4%) 21.7
P V15∩ SC3-DIAG 11 (10%) 18.4 14 (12%) 16.2

Table 6.8: Effect of intersecting SC2 with SC3 , as applied to a representative dictionary
of clusters gathered from 15 users. Results indicate that the DIAG pattern produces the
smallest dictionary, and still guesses a relatively large number of passwords.

The results shown in Table 6.8 indicate that, on average for the pool image, opti-

mizing with SC3-DIAG will reduce the dictionary size to 16 bits, while still guessing

12% of passwords. Similarly, for the cars image, optimizing with only SC3-DIAG will

reduce the dictionary to 18 bits, while still guessing 10% of passwords. We highlight

that since data from only 15 users are used, the results for P V15 are closer to PR15 , as

there are fewer clusters. We explore the effect of using all u users in Figures 6.7 and

6.8 below.

When clusters are used, we can place an ordering on the intersected Class C2

(P Vu) and Class C3 dictionary such that the passwords are ordered from most to

least probable (as defined by the product of the probabilities of each cluster in the

password). We examine the results of applying this ordering of P Vu∩ SC3 for each

image, as shown in Figure 6.7 and 6.8. Recall Section 6.2.4 (discussion of Class C3

dictionaries) for a description of each of the click-order patterns shown.

One may find it counter-intuitive that using all u users as opposed to 15 in Table

6.8 results in lower success for some of the click-order patterns in SC3 . However,

it is sensible when we consider that the more click-points used to generate SC2 , the

larger the clusters, and the more likelihood that some points will be“lost”due to their

belonging to another cluster. Although the clustering algorithm provides an overall
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dictionary size reduction, it does not necessarily guess as many passwords, and this

effect increases with more data. For example, PRu∩ SC3-DIAG is 27 bits and guesses

18% of passwords for cars, meaning that the clustering reduces the efficacy of the

dictionary by half, but with a dictionary that is less than one-sixteenth of the size.

Overall, the results show that intersecting SC2 with the SC3 dictionaries (except

CWCCW ) provides better performance than the SC2 dictionary alone (at least ini-

tially). The effect is more striking for pool than for cars; for example, in Fig. 6.7 we

see the SC2 ∩ SC3-DIAG dictionary guesses the first 7 passwords (6% of the total)

within 5 guesses. In general for pool, Fig. 6.7 shows that all SC2 ∩ SC3 dictionaries

(except CWCCW ) perform better than SC2 alone initially, but by the time they are

exhausted, the performance is better for SC2 alone. For cars, Fig. 6.8 shows that

all SC2 ∩ SC3 dictionaries perform better than SC2 alone (except for the first three

correct guesses).

6.5.6 Limitations of User Studies

As with all user studies, it is important to discuss possible limitations. There are

differences between the amount of clustering seen in our lab study and our field study

for the cars image, but the clustering for the pool image is quite similar in each study.

Using “leave-out-k” experiments on both the lab and field studies also indicates some

differences between the two studies.

Our first leave-out-k experiment was using only the field study data. We generated

a PR dictionary using a small set of field study user passwords to attack the remaining

field study user passwords. We use PR to ensure we do not incur any information

loss (which occurs to some extent when clustering is used). The result, in Table

6.9, shows a difference between the lab study and the field study (final) passwords,

as using actual field study passwords to generate a PR dictionary had much higher

success rates (13-24% more) than when 20 users from the lab study were used to

generate a PR dictionary (cf. Table 6.6).

Our second leave-out-k experiment was using only the lab study data. We use 10

randomly selected sets of 25 users from the lab study to generate both PR and P V

against the remaining 8-10 lab study users. The attack appeared to work similarly to
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Dictionary cars pool
m bitsize # passwords m bitsize # passwords

guessed guessed

PR20,longterm 100 33.1 29/89 (33%) 100 33.1 52/94 (55%)
PR10,longterm 50 27.9 23/99 (23%) 50 27.9 22/104 (21%)

Table 6.9: Dictionary attack results, using the first 20 and 10 users from the long term
study to seed an attack against the others. m is the alphabet size. See text for descriptions
of PR.

when applied to the field study for pool, but not for cars: the average percentage of

guessed lab study passwords for pool is 28% using PR25 and 20% using P V25 (about 9%

less than the results in Table 6.6), but no passwords were guessed for cars. Although

not statistically significant due to the small sample size used for testing, these results

may also indicate differences, for some images, between the passwords selected by the

lab study and field study user’s final passwords.

Here we discuss possible reasons for these differences. One possible reason for

the differences in user choice between the two studies is that the field study users

may not have been as motivated as the lab study users to create “difficult to guess”

graphical passwords. It is unclear how a user might measure whether they are creating

a graphical password that is difficult to guess, and whether in trying, if users would

actually change their password’s strength; one study [134] shows that only 40% of

users actually change the complexity of their text passwords according to the security

of the site. Another equally possible explanation might be that the lab study users

chose more difficult passwords than they would have in practice, as they were aware

there was no requirement for long term recall, and also did not have a chance to forget

and subsequently reset their passwords to something more memorable. Further, it

is possible that the user’s task focus in the lab study had an influence, such that

they were more motivated to create a more complex password than they might be in

a regular usage environment. With our current data, it seems unlikely that we can

conclusively determine a reason for these differences.

Despite these differences, we have demonstrated that there is still enough similarity

between the two groups to launch effective Class C2 attacks.
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6.6 Other (Non-Predictive) Attack Models

In Chapters 4, 5, and in this chapter, we found sets of weak password subspaces by

defining and applying predictive models. However, this raises the question of whether

there might be other undiscovered weak password subspaces (in the general sense).

Showing a weak password subspace exists defines a vulnerability, but it does not

prove that all passwords outside of the weak password subspace do not belong to

other (unknown) weak subspaces. We discuss this concept here, and another attack

model that, in some cases, might lead to a better understanding of the distribution

of passwords for a given scheme.

The key to a predictive model is that it is generable; if there is a pattern in

user choice, and passwords that exhibit that pattern cannot be generated in a known

way, then this pattern simply cannot be exploited. If patterns are not predicted

and subsequently tested for, then how do we find exploitable structure or patterns?

One method that has been used by password cracking software (e.g., [106]) is to use

Markov models of language (under the predictive assumption that users will choose

passwords from their language), and to generate passwords using bi- or tri-grams

from that language, ordered by decreasing probability. To effectively train a Markov

model, we need enough data to capture the frequency of each pattern, and the data

must be as close as possible to user choice in practice. Thus, an ideal candidate for

training is a large, clear-text password database.

A variation of this method was used by Davis et al. [34] to determine (for certain

sex/race groups) which sequences of images users were more likely to select for the

Faces and Story schemes (Faces is a variation of PassFaces; recall Section 3.2.2).

They create bi-grams using a training data set containing 80% of their collected user

passwords. A bi-gram in this case is an ordered pair of two images from at least

one user password. The assumption in the bi-grams model is that each image is

dependent upon the image chosen in the previous panel. They use those bi-grams to

regenerate passwords, and created a dictionary ordered by decreasing probability as

mainly defined by the bi-gram’s frequencies. They further created an ordering of the

entire password space, such that those passwords without representative bi-grams in

the training set of passwords are included in the dictionary. They found that 25% of
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passwords for Faces could be guessed in 13 guesses, and 25% of passwords for Story

could be guessed in 113 guesses. For such an attack to be effective, there must be

sufficient data to effectively create enough bi-grams and approximate their probability

of occurring. Intuitively, it would make sense that the amount of data required would

increase when there are fewer (and less severe) patterns in user choice.

Although it might seem that this type of attack would define all patterns in user

choice, we caution that this may not be the case, as it could easily depend on the

scheme and severity of patterns in user choice. It is not clear how well this attack

would work against schemes that do not have such dramatic patterns emerging. For

example, the DAS scheme might not have many users choosing the exact same strokes

(or sequences of strokes) in their password. In this case, it is not clear how well this

sort of attack would work, and whether it is simply a matter of collecting more

user passwords for training. It is possible that in cases where the patterns are more

abstract for the set of training passwords, that a predictive model could work better.

For a comparative example of this method with our predictive methods on one

scheme, we detail its application to the PassPoints scheme in Section 6.6.1. We show

that this method produces a very effective attack, guessing 8-11% of user passwords in

3 guesses, which leads us to question the security of PassPoints even in environments

where online attack is the only assumed threat.

6.6.1 Using Markov Models to Attack PassPoints

To use a Markov model to attack PassPoints, we assume that each click-point in a

gcb-password only depends on the previous click-point. To capture this dependency,

we create bi-grams based on subsets of the passwords collected in the field study.

In the case of gcb-passwords, a bi-gram is an ordered pair of click-points, and each

5-click password will produce four bi-grams. We further assume that bi-grams are

more likely to occur at the specific positions in which they were observed within the

training passwords; for example, if [(100, 100), (200, 200)] was only observed as the

first bi-gram in a password, we assume that it is more likely that it will occur as the

first two points in a password than in any other position. Thus, we include counts of

the observed bi-gram positions in our training (i.e., each bi-gram would be observed
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in at least one of the four possible bi-gram positions).

We perform the following method thirty times, for a given image:

• Select a random subset B of 80% of user passwords from our field study.5

• Create position-aware, normalized bi-grams as follows. Using each password

p ∈ B: (1) calculate clusters as discussed in Section 6.3.2, (2) for each p ∈
B, normalize each of the five click-points in the password to the cluster it

belongs to, and (3) split each normalized password into four bi-grams (i.e.,

[(x1, y1), (x2, y2)], [(x2, y2), (x3, y3)], [(x3, y3), (x4, y4)], [(x4, y4), (x5, y5)]).

• Each position-aware, normalized bi-gram has a set of 5 counts: one for total

frequency, and four position frequencies (i.e., one frequency count for each of

four possible observed bi-gram positions).

• Generate passwords based on the bi-grams created in the above steps. We only

use the bi-gram if the frequency count at that position is greater than zero (i.e.,

it was observed to occur at that specific password position at least once). The

probability of a generated password is based on the product of the frequencies

of each bi-gram at its position within the generated password.

• Sort generated passwords by decreasing probability, and use the sorted order to

guess the remaining 20% of passwords.

Results Using Field Study Data

From the thirty trial runs, we average the number of passwords guessed after making

1, 2, 3, 4, 5, 10, 50, 100, 150, 200, 500, 5000, and 10000 guesses. Our results are

plotted in Figure 6.9.

We note that the limitations discussed in Section 6.5.6 should also be taken into

consideration when interpreting these results. In general, our results shown in Figure

6.9 demonstrate that there are other probable patterns than are captured by consider-

ing the cluster probabilities alone (as in Class C2), or the simple click-order patterns

5This could be done with any password data set, but in this case, we use those from our field
study.
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Figure 6.9: CDF for applying a Markov model to attack the PassPoints scheme.

(as in Class C3). Clearly, finding a handful of weak password subspaces does not

necessarily imply that there are no more left to find, and/or that the existing weak

password subspaces could be smaller and more significant (as defined in properties 1

and 2 from Definition 1). In effect, this method demonstrates that there are more

patterns to be found, although it is unclear at this point how they can be character-

ized without having access to a large clear-text password database as we do from our

field study. However, the efficacy of such an attack should be seriously considered,

as it still represents how well an attacker could do with another (not yet known)

dictionary-generation technique.

6.7 Hot-Spots Computed for Click-Based Graphical Passwords in Lab

and Field Studies

Here we describe further details concerning the hot-spots found for click-based graph-

ical passwords in both the lab and field studies (recall Sections 6.3.2 and 6.5.1). This

section is intended to discuss related material of interest that is not required to un-

derstand the attacks presented in this chapter. Section 6.7.1 discusses the clustering

found on the 17 images from the lab study, and Section 6.7.2 discusses the clustering

found on the two images from the field study.
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6.7.1 Hot-Spots Computed from Lab Study Results

We collected data from a short-term in-lab study of 43 users as described in Section

6.3.2, and used a clustering algorithm (recall Section 6.3.2) to determine a set V

of (non-empty) clusters and their sizes. To begin comparing the 17 images studied,

Figure 6.10 shows the sizes of the top five most popular clusters, and the total number

of popular clusters.
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Figure 6.10: The five most popular clusters (in terms of size, i.e., # of times selected), and
# of popular clusters (of size ≥ 5). Results are from 32-40 users, depending on the image,
for the final passwords created on each image. For pcb, which shows only 6 clusters of size
≥ 5, the size of clusters 2-5 become 5, 5, 4, and 3 when counting at most one click from
each user.

Given the cluster sizes, we then calculate the observed “probability” pj (based on

our user data set) of the cluster j being clicked, as cluster size divided by total clicks

observed. When the probability pj of a certain cluster is sufficiently high, we can

place a confidence interval around it for future populations (of users who are similar

in background to those in our study) using formula (6.1) as discussed below.
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Each probability pj estimates the probability of a cluster being clicked for a single

click. For 5-click passwords, we approximate the probability that a user chooses

cluster j in a password by 5pj = 5 × pj. Note that the probability for a cluster j

increases slightly as other clicks occur (due to the constraint of 5 distinct clusters in

a password); we ignore this in our present estimate.

Our results in Figure 6.10 indicate a significant number of hot-spots for our sample

of the full population (32− 40 users per image). Previous “conservative” assumptions

[164] were that half of the available alphabet of T-regions would be used in practice

– or 207 in our case. If this were the case, and all T-regions in the alphabet were

equi-probable, we would expect to see some clusters of size 2, but none of size 3 after

40 participants; we observed significantly more on all 17 images. Figure 6.10 shows

that some images were clearly worse than others. There were many clusters of size at

least 5, and some as large as 16 (see tea image). If a cluster in our lab study received

5 or more clicks – in which case we call it a popular or high-probability cluster – then

statistically, this allows determination of a confidence interval, using Formula (6.1)

which provides the 100(1 − α)% confidence interval for a population proportion [37,

page 288].

p ± zα/2

√
pq

n
(6.1)

Here n is the total number of clicks (i.e., five times the number of users), p takes the

role of pj, q = 1 − p, and zα/2 is from a z-table. A confidence interval can be placed

around pj (and thus 5pj) using (6.1) when np ≥ 5 and nq ≥ 5. For clusters of size

k ≥ 5, p = k
n
, then np = k and nq = n − k. In our case, n ≥ 32 · 5 and n − k ≥ 5, as

statistically required to use (6.1).

Table 6.10 shows these confidence intervals for four images, predicting that in

future similar populations many of these points would be clicked by 10-50% of users,

and some points would be clicked by 20-60% of users with 95% confidence (α = .056).

For example, in Table 6.10(a), the first row shows the highest frequency cluster (of

size 13); as our sample for this image was only 35 users, we observed 37.1% of our

6This is not the same α as used in Definition 1, but is the significance level used to compute the
confidence level.
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participants choosing this cluster as part of their password. Using (6.1), between

17.7% and 56.6% of users from future populations are expected to choose this same

cluster (with 95% confidence).

(a) pool (originally from [163, 164]). (b) mural (originally from [163]).

(c) philadelphia (originally from [163]). (d) truck (originally from [49]).

Figure 6.11: Observed click-points from lab study. Halo diameters are 10 times the size of
the underlying cluster, illustrating its popularity.

Figure 6.10 and Table 6.10 show the popularity of the hottest clusters; Figure

6.10’s line also shows the number of popular clusters. The clustering effect evident in

Figures 6.10, 6.11, and Table 6.10 clearly establishes that hot-spots are very prominent

on a wide range of images. We further pursue how these hot-spots impact the practical

security of full 5-click passwords in Section 6.3.2. As a partial summary, our results

suggest that many images have significantly more hot-spots than would be expected

if all T-regions were equi-probable. The paperclips, cars, faces, and tea images are

not as susceptible to hot-spotting as others (e.g., mural, truck, and philadelphia). For

example, the cars image had only 4 clusters of size at least 5, and only one with
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(a) pool image (b) mural image
Cluster Cluster

size 5pj 95% CI (5pj) size 5pj 95% CI (5pj)

13 0.371 (0.177; 0.566) 14 0.400 (0.199; 0.601)
12 0.343 (0.156; 0.530) 13 0.371 (0.177; 0.566)
12 0.343 (0.156; 0.530) 10 0.286 (0.114; 0.458)
11 0.314 (0.134; 0.494) 8 0.229 (0.074; 0.383)
11 0.314 (0.134; 0.494) 7 0.200 (0.055; 0.345)

(c) philadelphia image (d) truck image
Cluster Cluster

size 5pj 95% CI (5pj) size 5pj 95% CI (5pj)

10 0.286 (0.114; 0.458) 15 0.429 (0.221; 0.636)
10 0.286 (0.114; 0.458) 14 0.400 (0.199; 0.601)
9 0.257 (0.094; 0.421) 13 0.371 (0.177; 0.566)
9 0.257 (0.094; 0.421) 13 0.371 (0.177; 0.566)
7 0.200 (0.055; 0.345) 13 0.371 (0.177; 0.566)

Table 6.10: 95% confidence intervals for the top 5 clusters found in each of four images.
The confidence intervals are for the percentage of users expected to choose this cluster in
future populations.
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frequency at least 10. The mural image had 15 clusters of size at least 5, and 3

of the top 5 frequency clusters had frequency at least 10. Given that our sample

size for the mural image was only 36 users, these clusters are suprisingly popular.

This demonstrates the range of effect the background image can have (for the images

studied).

Although previous work [163] suggests using intuition for choosing more secure

background images (no further detail was provided), our results apparently show

that intuition is not a good indicator. Of the four images used in other click-based

graphical passwords studies, three showed a large degree of clustering (pool, mural,

and philadelphia). Furthermore, two other images that we“intuitively”believed would

be more secure background images were among the worst (truck and citymap-nl). The

truck image had 10 clusters of size at least 5, and the top 5 clusters had frequency at

least 13.

Finding reliable automated predictors of more secure background images remains

an unsolved problem. Our work to determine whether simple measures (image seg-

mentation, corner detection, and image contrast measurement) correlate with the

amount of observed hot-spotting (as measured by number of clusters observed di-

vided by the number of points collected) is shown in Figures 6.12, 6.13, and 6.14.

The graphs indicate that these measures do not appear to offer reliable indicators

of hot-spotting. Image contrast was measured using by (1) converting the image

to grayscale using Matlab’s rgb2gray function, and (2) obtaining the contrast using

graycoprops Matlab function with every surrounding pixel considered in the offsets

parameter. Contrast is 0 for a constant image. The number of corners was measured

using Harris corner detection function as implemented by Kovesi [79].7 Number of

segments was measured using graph-based image segmentation [46] with σ = 0.5,

k = 300, and min = 16.8

We would have expected that higher contrast images, images with more corners,

and/or images with more segments would have had less observed hot-spotting (i.e.,

7As harris(image,1, 1000, 3)
8min defines the minimum segment size, k influences the resulting segment sizes (larger values

favor larger segments), and σ = 0.5 is the recommended value used for smoothing the image with a
Gaussian filter prior to segmentation.
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Figure 6.12: Correlation of lab study hot-spotting with image contrast.
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Figure 6.13: Correlation of lab study hot-spotting with number of corners.
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Figure 6.14: Correlation of lab study hot-spotting with number of segments.

would have values closer to one). If this were the case, Figures 6.12, 6.13, and 6.14

would have shown points that would appear to be points on a positive slope. However,

the points are quite scattered, indicating a weak correlation between each of these

three measures and the observed hot-spotting.

Thus, we next explore the impact of hot-spotting across images to help choose

two images for further analysis.

Measurement and Comparison of Hot-Spotting for Different Images

To compare the relative impact of hot-spotting on each image studied, we calculated

two formal measures of password security for each image: entropy H(X), in equation

(6.2), and in equation (6.3), the expected number of guesses E(f(X)) to correctly

guess a password assuming the attacker knows the probabilities wi > 0 for each

password i. The relationship between H(X) and E(f(X)) for password guessing is

discussed by Massey [90]. Of course in general, the wi are unknown, and our study

gives only very coarse estimates; nonetheless, we find it helpful to use this to develop

an estimate of which images will have the least impact from hot-spotting. For (6.2)

and (6.3), n is the number of passwords (of probability > 0), random variable X

ranges over the passwords, and wi = Prob(X = xi) is calculated as described below.
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H(X) = −
n∑

i=1

wi · log(wi) (6.2)

E(f(X)) =
n∑

i=1

i · wi , where wi ≥ wi+1, and (6.3)

f(X) is the number of guesses before success.

We calculate these measures based on our observed user data. For this purpose,

we assume that users will choose from a set of click-points (following the associated

probabilities), and combine 5 of them randomly. This assumption almost certainly

over-estimates both E(f(X)) and H(X) relative to actual practice, as it does not

consider click-order patterns or dependencies. Thus, popular clusters likely reduce

security by more than we estimate here.

We define P V to be the set of all 5-permutations derivable from the clusters

observed in our user study (as computed in Section 6.3.2). Using the probabilities pj

of each cluster, the probabilities wi of each password in P V are computed as follows.

Pick a combination of 5 observed clusters j1, . . . , j5 with respective probabilities

pj1, . . . , pj5. For each permutation of these clusters, calculate the probability of that

permutation occurring as a password. Due to our lab study instructions that no two

click-points in a password can fall in the same T-region, these probabilities change

as each point is clicked. Thus, for password i = (j1, j2, j3, j4, j5), wi = pj1 · [pj2/(1 −
pj1)] · [pj3/((1 − pj1) · (1 − pj2))] · . . .).

The resulting set P V is a set of click-based graphical passwords (with associated

probabilities) that coarsely approximates the effective password space if the clusters

observed in our user study are representative of those in larger similar populations.

We can order the elements of P V using the probabilities wi based on our user study.

An ordered P V could be used as the basis of an attack dictionary; this ordering could

be much improved, for example, by exploiting expected patterns in click-order. See

Section 6.3.3 for more details.

For comparison to previous “conservative” estimates that simply half of the avail-

able click-points (our T-regions) would be used in practice [164], we calculate PU

as defined below. We compare to PU as it is a baseline that approximates what we

would expect to see after running 32 users (the lowest number of users we have for
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any image), if previous estimates were accurate, and T-regions were equi-probable.

PU is the set of all permutations of clusters we expect to find after observing 32 users,

assuming a uniformly random alphabet of size 207.

Fig. 6.15 depicts the entropy and expected number of guesses for P V . Notice the

range between images, and the drop in E(f(X)) from PU to values of P V . Compari-

son to the marked PU values for (1) H(X) and (2) E(f(X)) indicates that previous

rough estimates are a security overestimate for practical security in all images, some

much more so than others. This is at least partially due to click-points not being

equi-probable in practice (as illustrated by hot-spots), and apparently also due to the

previously suggested effective alphabet size (half of the full alphabet) being an over-

estimate. Indeed, a large alphabet is a big part of the theoretical security advantage

that these graphical passwords have over text passwords. If the effective alphabet

size is not as large as previously expected, or is not well-distributed, then we should

reduce our expectations of the security.

These results appear to provide fair approximation of the entropy and expected

number of guesses for the larger set of users in the field study; we performed these

same calculations again using the field study data, with the following results. For

both of the two images, the entropy measures were within one bit of values measured

here (less than a bit higher for pool, and about one bit lower for cars). The number

of expected guesses increased for both images (by 1.3 bits for cars, and 2.5 bits for

pool).

The variation across all images shows how much of an impact the background

image can have, even when using images that are “intuitively” good. For example,

the image that showed the most impact from hot-spotting was the mural image,

chosen for an earlier PassPoints usability study [163]. We note that the paperclips

image scores best in the charted security measures (its H(X) measure is within a

standard deviation of PU); however, 8 of 36 users who created a password on this

image could not perform the subsequent login (and skipped it – as noted earlier), so

the data for this image represents some passwords that are not repeatable, and thus

we suspect it would have lower relative security in practice.

Overall, one can conclude that image choice can have a significant impact on
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the resulting security, and that developing reliable methods to filter out images that

are the most susceptible to hot-spotting would be an interesting avenue for future

research.

We used these formal measures to make an informed decision on which images to

use for our field study. Our goal was to give the PassPoints scheme the best chance

(in terms of anticipated security) we could, by using one image (cars) that showed

the least amount of clustering (with the best user success in creating a password),

and also using another that ranked in the middle (pool) that was also used in previous

PassPoints studies.

6.7.2 Field Study Hot Spots and Relation to Lab Study Results

Here we present the clustering results from the field study, and compare results to

those on the same two images from the lab study. Fig. 6.5b shows that the areas that

were emerging as hot-spots from the lab study (recall Fig. 6.11a) were also popular

in the field study, but other clusters also began to emerge. Fig. 6.5a shows that even

our “best” image from the lab study (in terms of apparent resistance to clustering)

also exhibits a clustering effect after gathering 109 passwords. Table 6.11 provides a

closer examination of the clustering effect observed.

Image Size of most popular clusters # clusters
Name # 1 # 2 # 3 # 4 # 5 of size

≥ 5

cars 26 25 24 22 22 32
pool 35 30 30 27 27 28

Table 6.11: Most popular clusters (field study).

These values show that on pool, there were 5 points that 24-31% of users chose as

part of their password. On cars, there were 5 points that 20-24% of users chose as

part of their password. The clustering on the cars image indicates that even highly

detailed images with many possible choices have hot spots. Indeed, we were surprised

to see a set of points that were this popular, given the small amount of observed

clustering on this image from our smaller lab study.
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The prediction intervals calculated from our lab study (recall Section 6.3.2) provide

reasonable predictions of what we observed in the field study. For cars, the prediction

intervals for 3 out of the 4 popular clusters were correct. For pool, the prediction

intervals for 8 out of the 9 popular clusters were correct. The anomalous cluster on

cars was still quite popular (chosen by 12% of users), but the lower end of the lab

study’s prediction interval for this cluster was 20%. The anomalous cluster on pool

was also still quite popular (chosen by 18% of users), but the lower end of the lab

study’s prediction interval for this cluster was 19%.

Our studies allow us to update previous assumptions that half of all T-regions on

an image will be chosen by users. After collecting 570 and 545 points, we only observed

111 and 133 unique clusters (for pool and cars respectively); thus, one quarter to one

third of all T-regions would be a more reasonable estimate even from highly detailed

images, and the relative probabilities of these regions should be expected to vary quite

considerably.

6.8 Conclusion

Our predictive models identified two weak password subspaces for gcb-passwords:

Class C2 (31.1-33.4 bits) and Class C3-DIAG (32.6 bits). These two subspaces were

found to correctly guess 20-36% and 26-46% of gcb-passwords respectively from our

large scale field study. Further, we found that combining Class C2 and Class C3-DIAG

produces dictionaries of 11 bits fewer in size, while still guessing a significant number

of passwords (8-10%).

Our non-predictive attack model (using markov models, recall Section 6.6.1) was

found to correctly guess 8-11% of passwords from our large scale field study in 3

guesses. This result makes it difficult to recommend the use of PassPoints in any

environment, as it is apparently vulnerable to this attack even if account lockout is

set after 3 incorrect guesses. This allows us to update our recommendations, such that

user choice not be allowed in PassPoints, without some way to mitigate the effects of

hot-spotting and dependencies between click-points.

We present a set of tentative recommendations for reducing the impact of our

predictive attacks in Sections 6.8.1 and 6.8.2.
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6.8.1 Password Rules

Given our knowledge of weak password subspaces for PassPoints (based on our pre-

dictive models), we suggest the following as an initial set of gcb-password rules.

1. Disallow passwords that follow the DIAG click-order pattern.

2. Disallow passwords with any click-point on a hot-spot that occurs with proba-

bility ≥ α (from property 2, Definition 1), as defined by human computation.

The rationale for using α as the maximum probability for a hot-spot, is that

it appears there are dependencies between a user’s 5 click-points (as indicated by

the high success rates of both SC3-DIAG and the markov model attacks described

in Section 6.6). The worst-case scenario is then that each hot-spot observed in a

human-computated data set will be part of a 5-click sequence that occurs with that

same probability.

We believe that the first rule should be fairly straightforward to implement; how-

ever, implementing the second rule may be more difficult communicate (that a certain

area is disallowed). For example, any method to visually blot out the regions must

be studied to ensure it does not create usability problems, or new patterns related to

the disallowed points. An interesting avenue for future work would be to determine

whether graphical password users create other predictable patterns when their choices

are disallowed by proactive checking.

Although these rules will help prevent our SC1 and SC3-DIAG attacks, we caution

that there is no reason to believe they will help protect against our non-predictive

attack (recall Section 6.6.1).

6.8.2 Implementation Enhancements

Implementation enhancements for text-based passwords can also be applied to graph-

ical passwords. PassPoints using robust discretization [13], can be stored using a

one-way hash and could thus benefit from hashing algorithms with an adaptable cost

(e.g., see [128]) and/or that use password stretching or repeated hashing of passwords

(e.g., see [59]) to increase the computational cost of guessing attacks. Also, the user
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can specify how long each guess should take by using Boyen’s halting puzzles [18],

although a usable integration of this concept into the system may prove more of a

challenge (recall discussion in Section 2.3.2). “Salting” adds random data to the com-

putation of each user’s password hash, and thus if any users have the same password,

the hashes will be different. Salting thus forces an attacker to compute a new hash for

each password guess/user combination, increasing the computational cost of guessing

attacks against a set of users.

Our implementation of Itti’s [67] visual attention model may be used proactively

to determine background images to avoid, as those images on which the visual atten-

tion model performed well (e.g., identifies some areas as much more interesting than

others) appear more vulnerable to the Class C1 image processing attacks from Section

6.3.1. Unfortunately, filtering images using this method would not necessarily offer

protection against the Class C2 human-seeded attacks.

The theoretical password space could be increased by changing a number of param-

eters such as increasing the number of click-points used, the image size, and“zooming

in” [14, 71]. Whether this method achieves acceptable usability and security requires

further study. One exception is reducing the error tolerance of each click-point: this

would increase the size of the full password space, and usability studies on the issue

indicate that an error tolerance T-region of 9 × 9 pixels would be reasonable [24].

Finally, Cued Click-Points (CCP) [25] presents a sequence of 5 images on which

the user clicks each once. While CCP does not increase the full password space, it

increases the difficulty of generating an attack, as an attacker would need to obtain

and analyze at least five images instead of a single one (for more details, see Section

3.2.2).



Chapter 7

Pass-thoughts: a Preliminary Proposal

7.1 Introduction

With the goal of identifying a promising direction in user authentication that might

be more immune to attack, in this chapter we discuss a preliminary proposal for a

new idea that we call “pass-thoughts”. This idea is now also being actively pursued

by other groups [35].

The goal of a pass-thoughts system would be to extract as much entropy as possi-

ble from a user’s brain signals upon “transmitting” a thought using a brain-computer

interface (BCI). A pass-thoughts system might prove to have some interesting char-

acteristics (but these are not proven herein). Provided that these brain signals can

be recorded and processed in an accurate and repeatable way, a pass-thought sys-

tem might provide a quasi two-factor, non-static, authentication method resistant

to shoulder-surfing. The potential size of the space of a pass-thought system would

seem to be unbounded in theory, although in practice it will be finite due to system

constraints.

We discuss the motivation for pass-thoughts in Section 7.2, the basic concept

in Section 7.3, its potential in Section 7.4, a few example deployment scenarios in

Section 7.5, discussion of security in Section 7.6, general discussion in Section 7.7,

and required next steps in Section 7.8.

7.2 Motivation

As discussed in Chapter 2, text passwords have many well-known limitations. While

some proposed replacements for passwords do not have the same limitations, most

schemes have other limitations or requirements as discussed herein. For example,

static biometric systems rely upon unchanging features that have a lifetime as long

128
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as the individual; this characteristic, combined with the threat of theft of biometric

templates leaves static biometrics (on their own) unsuitable for remote authentication.

In contrast, smart cards can be used to securely authenticate users to remote servers,

but at the cost and inconvenience of per-user hardware tokens.

Now more than ever, shoulder-surfing is a problem for passwords. The ubiquity of

cell phone cameras and wireless video cameras brings a new ever-present threat upon

us: recorded shoulder-surfing. As users, we can no longer simply look over our shoul-

der to be aware of an adversary observing our password. To combat such a threat,

we require an authentication method that is unobservable under any circumstance.

Shoulder surfing can be addressed in the context of “what you know” authen-

tication methods, for example through the use challenge-response protocols (recall

Section 3.2.2).1 These methods require cognitive processing by the user for each bit

of information, and thus unfortunately would require a large amount of a user’s input

time to increase the size of the password space. Although they are unlikely to be-

come a ubiquitous authentication scheme for that reason, they may be useful in some

high-security settings.

A user may also pose a threat to a “what you know” authentication system by

writing down their password, or sharing it with others. Both textual and some types

of graphical passwords are susceptible to this threat. Users often share passwords

to bypass the administrative overhead of setting up the proper group access control.

Sharing passwords may be more convenient for the user; however, it defeats the

purpose of user authentication. The risk of writing a password down can be minimized

by storing it in a physically secure location and shredding it upon disposal; otherwise

without these cautions, writing a password down makes it available to anyone with

physical access (e.g., co-workers, cleaners, and dumpster-divers all have access). When

a user can describe their password to others, the user is also susceptible to social

engineering methods whereby the user is tricked by an adversary into providing their

password [57]. Thus, we currently have a paradox: we want a scheme whereby we can

write a password down as a reminder, yet we want to ensure the password cannot be

used by others.

1Although for at least one scheme (Weinshall’s protocols [165]), observing a number of login
sessions allows for recovery of the password (recall Section 3.3.5).
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The susceptibility of “what you know” authentication methods to guessing attack

is largely created by patterns in user choice. Authentication schemes that are based

on “what you have” (physical tokens, such as smart cards [1]) have the advantage

of high entropy, and if they are lost or stolen, they can be changed and replaced.

However, they are not necessarily always in the owner’s possession. During the period

before a user’s lost token(s) is revoked, their system and the information on it may

be vulnerable [74]. An idea to solve this problem is to have users wear their physical

token, as in zero-interaction authentication (ZIA) [27]. ZIA is an authentication

scheme that provides security against physical attacks by continuously polling the

token to ensure it (and thus presumably the user) is present. ZIA appears to be

a useful scheme to protect against physical attacks, particularly for mobile devices.

However, it suffers from the same scalability problem as smart cards and other physical

token methods: the tokens become burdensome if required for many different domains,

resulting in a stack of such tokens for the user to bear.

Biometrics attempt to solve the problem of “what you know”and “what you have”

authentication methods by the use of an appealing concept: authentication by using

the unique physical or behavioural characteristics of users, e.g., fingerprints [135], the

iris [32], voice recognition [99], on-line (hand-written) signature verification [126, 84],

and keystroke dynamics [100]. Static biometrics (e.g., fingerprints and iris) suffer

from a major drawback: they cannot be (easily) changed. Because this biometric

information is valid for the lifetime of the user and risks being stolen, such information

cannot be used as keying material for remote authentication purposes. Furthermore,

even when performing local identification, certain types of biometric readers cannot

detect fraudulent inputs. For fingerprints, it has been shown that a gelatin finger

that models a legitimate user’s fingerprint (e.g., lifted from a glass) can fool many

commercial fingerprint readers [91]. Other practical problems of biometrics include

that a percentage of users will simply be unable to enroll [70].

Lopresti et al. [86] introduce the concept of generative attacks for behavioural

biometrics. Generative attacks use information obtainable from the target user (or

similar populations in general), and recombine the information to create a candi-

date login attempt. Ballard et al. [6] generate and successfully apply a generative
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handwriting-recognition attack based on population statistics of handwriting, col-

lected from a random sample of 15 users with the same writing style. In arguably the

most realistic study to date of the threats faced by behavioural biometrics, they found

their generative attacks to be more effective than attacks by skilled and motivated

forgers [6]. Their results call into question the use of handwriting biometrics, and

their methods might be also be applicable to other behavioural biometrics (although

this remains to be shown), particularly when population statistics for the features

used have little variation, and when the information used is publicly available (e.g.,

the user’s voice, keystroke dynamics, or handwriting).

The following set of authentication method requirements emerge from the unre-

solved problems outlined herein, and other well-known requirements for user authen-

tication (see Section 8.3).

R1. Changeability. If the user’s authentication information is compromised, we must

be able to replace this information (and revoke any old password or access

credential).

R2. Shoulder-surfing resistance. The scheme must not be vulnerable to shoulder-

surfing, particularly in the presence of ubiquitous visual recording devices.

R3. Theft protection. This includes physical theft and the infeasibility of genera-

tive and guessing attacks. If we must rely on the entropy of an authentication

scheme for protection against off-line dictionary attack, we require an authen-

tication method whose entropy can scale with processor speeds, Moore’s Law,

and increasing distributed collaboration.

R4. Protection from user non-compliance. To discourage unintended transfer to

other parties, the user should not be able to write down (in a manner useful to

an attacker) or share their authentication information “too easily”.

R5. Usability. Authentication should be usable in terms of both (a) elapsed time

for authentication, and (b) ease to perform authentication task. If the authen-

tication process takes too long, or is difficult to perform, people will prefer to

use another (more usable) method or none at all.
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R6. Cost. System setup and maintenance should not be costly in terms of time

and/or money.

R7. Acceptability. This is dependent upon on the user base and environment, but

can be defined in terms of being: socially acceptable, not destructive to personal

privacy, and perceived as filling a need [29].

Although several known methods meet a subset of these, none meet all of these

desiderata. Until 2006, it appeared that on-line (hand-written) signature verification

met the last six requirements, and possibly even the first; a signature could be changed

in the sense that it is not the user’s signature written and verified, but a password

or graphical design. It now appears that handwriting is particularly vulnerable to

skilled forgers and generative attacks [6].

Knowledge-based schemes suffer from lowered entropy due to user choice, physical

tokens can be expensive to deploy and are susceptible to loss or theft, static biometrics

are not changeable, and some behavioural biometrics are susceptible to generative

attacks. Although R1 − R7 are not necessarily essential in all environments, we

believe they are representative for many workplaces and labs.

We conjecture that pass-thought systems have the long-term potential to satisfy

most of the requirements identified herein, except R5(a) and R6 depend upon ad-

vances in hardware as discussed in Section 7.8. R7 is unknown at this point, and

would require investigation as discussed in Section 7.8.1.

7.3 Basic Concept

Imagine if we could authenticate by thinking a password. We could avoid the shoulder

surfing problem associated with most “what you know” schemes by simply “transmit-

ting” some chosen thought or response, authenticating with our minds. This type

of authentication might also provide a “who we are” by virtue of the uniqueness of

our individual brains (see Section 7.4). While such an idea might appear to lie in

the realm of science fiction, recent advances in Brain-Computer Interface (BCI) tech-

nology give evidence that authenticating with our minds is within our technological

reach.
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The main goal of BCI research is to provide an alternative communication and

control channel that does not depend on the brain’s normal output pathway of pe-

ripheral nerves and muscles [156]. The driving application for BCI research is the

communication and control of prosthetic devices for disabled patients. BCIs have

been a hot topic for the past few years, making notable progress such as using a

paralyzed patient’s thoughts to control a robotic arm [43], and allowing paralyzed pa-

tients to communicate (albeit slowly) [12]. In general, these BCIs work by observing

a brain signal S, extracting its features F , and then translating or classifying these

features into some recognizable command C through the use of signal processing and

machine learning techniques. While BCI technology is still very immature, current

efforts have demonstrated that the electrical signals generated by our brains can be

recorded and interpreted by man-made sensors. Further details on BCI technology

are available elsewhere [11, 153].

We propose an authentication method for access to computing devices, whereby

a user thinks a password. We call this method a pass-thought, the general concept of

which is illustrated in Figure 7.1. Steps 2-5 from the general pass-thought description

in Figure 7.1 could be performed using a BCI.

There is a significant difference between what the BCI research to date can of-

fer, and the BCI requirements of pass-thoughts. BCI research has been focussed

on enabling a user to control something external (e.g., movement of a cursor) using

their thoughts. For a user to provide control commands using their thoughts, their

thoughts must undergo translation (interpretation). Pass-thought input should un-

dergo feature extraction to filter out the non-repeatable parts, but there is no need

to translate the brain signals. Such translation is not only unnecessary but unde-

sirable as it might reduce the entropy the user’s brain signals provide. Given that

the translation of signals is one of biggest challenges for BCI research, our proposed

pass-thought application might be better suited to BCI technology than the current

communication and control applications under research.
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Figure 7.1: General concept of a pass-thought. 1) The user presses a key when ready,
thinks of their previously chosen pass-thought (or responds to a presented challenge), and
presses the key when done. 2) Electrodes record the signal S emitted during the time
between the start and stop key presses. 3) S is processed into signal features F . 4) The
subset of features R ∈ F are those that best capture the user’s thought and are consistent
over time (determined by trials). 5) R acts as a template, most likely stored using error-
tolerant encryption where R would encrypt a key or checkword in such a way that permits
some small level of error (e.g., using methods of Monrose et al. [100]). 6) The stored R is
used for user authentication to a computing device; login success is indicated by the user’s
pass-thought entry R� approximately matching the stored R.

7.4 The Potential of Pass-thoughts

Our authentication problem is one of extracting high-entropy information from a

user to prove that they are who they claim to be. This essentially means extracting

something that makes a person unique. It is interesting to consider how people

recognize one another: aside from appearances, we recognize a person’s movements,

actions, expressions, and speech, all of which are initiated by thought in the brain.

There are a number of reasons to believe that there is uniqueness (given genetic

and environmental differences) within our brains: certain areas of our brains are devel-

oped more depending on our training and experience. For example, string musicians

are known to have larger somatosensory cortical areas associated to the fingers than

the average person [45]. Also, the alpha frequency (a signal feature in an electroen-

cephalogram signal) has been found to have considerable variability between subjects

[42].

Other results show that the electroencephalogram (EEG) has biometric potential

[118, 117, 127]. This biometric has been shown to differentiate 40 people with 95%
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accuracy [118]. Although using the EEG as a biometric is interesting, these studies

overlook the aspect of changeability. The brain has a vast number of states and

responds differently to various stimuli. Pass-thoughts focus on the changeable (or

non-static) nature of these signals, which might be augmented by our individual

EEG characteristics (or other brain phenomena) to produce a non-static biometric.

These results may imply that the signals emitted from our brains are different

upon thinking “the same thing”. Thus, it is plausible that if two people think of

what they could best describe as the same thing, the brain signals emitted would be

distinguishable. Similarly, we also expect two different thoughts by the same person

to result in distinguishable signals, as differing signals are what allow BCIs to perform

different tasks on behalf of the user.

If we conjecture that a user’s pass-thoughts could be recorded with enough accu-

racy to distinguish between different thoughts and distinguish the differences between

different users’ “same” thoughts, pass-thoughts may be a natural two-factor (what we

know and who we are), non-static authentication scheme. A pass-thought is change-

able (the thought itself; the “what you know” portion), and the physiological unique-

ness of a user’s brain that emits the pass-thought would act as a second, biometric

factor.

In addition to users creating pass-thoughts, a pass-thought could be the measured

response to a stimuli (e.g., pictures, music, video clips, or the touch of raised pin

patterns).

The theoretical entropy of pass-thoughts is potentially enormous. A pass-thought

could belong to a language (as in textual passwords), an image (as in graphical pass-

words), a type of (imagined) movement, an abstract thought, an emotion, a memory,

etc. An entire sentence, picture, or memory (or sequence thereof) can be represented

by a simple thought. Even pieces of music can be represented by a thought. There

is also a significant amount of variation within the same type of thought. For exam-

ple, a user could think of their first dog in countless ways through combinations of

a variety of factors including the dog’s name, breed, smell, bark, colour, visualizing

the dog doing activities such as running through the park, sleeping, eating, licking

one’s face, etc. (not to mention the places, movements, and emotions associated with
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each of these actions). It is impossible for us to know the theoretical size of the pass-

thought space; a meaningful measure would depend upon many variables including

the method of capturing signals, the duration of the capture, the stimuli used (if any),

and signal processing method.

While pass-thoughts have the potential to be an authentication scheme with an

extremely large password (pass-thought) space, in practice there would be boundaries

on the size of the pass-thought space that correspond to the encoding scheme. Since

the large theoretical pass-thought space will be mapped to a smaller encoding space,

it is possible that collisions will occur between different users (or the same user) with

different pass-thoughts. There may also be a more probable subset of pass-thoughts as

with other “what you know” authentication schemes that correlate with the strengths

of human memory. While these factors may limit the theoretical strength of pass-

thoughts, we conjecture that the “who you are” factor, or the use of a challenge-

response scheme (see Section 7.5.2), might compensate for such limitations.

Despite this promising potential, we recognize that BCI technology is still in its

infancy, and thus the potential accuracy of signal recording and processing is un-

known. However, as indicated by an analysis of the number of publications per year

on the topic of “Brain Computer Interface” using the ISI Web of Knowledge [66],

research interest in this topic is steadily increasing. For example, from 1995-1999,

there were only a total of 28 publications, but there were more than 50 in each year

from 2003-2005, and over 100 in 2006 alone.

7.5 Example Pass-thoughts Deployment Scenarios

Here we discuss a few example deployment scenarios for pass-thoughts. We discuss

the parameters, type of memory and user response involved, advantages, and disad-

vantages of each method. The example described in Section 7.5.1 is a scheme that

should be possible today, but only involves user choice, and is less likely to contain

an additional biometric factor. Thus, the extra security provided by this method is

limited to that of preventing shoulder-surfing. The example described in Section 7.5.2

is on the other side of the spectrum, not necessarily involving user choice or voluntary

response, but an innate response to a set of stimuli.
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7.5.1 Simple Scenario: Flashing Grid

In this section, we discuss a feasible (in the sense it could be built) pass-thoughts

system given current BCI technology, guided by the 6 steps in Figure 7.1. We assume

the same BCI capability as that shown in recent BCI prototypes such as the Thought

Translation Device [12]. We also assume that the user is logging onto a desktop PC,

where the pass-thought will be used exactly as a password.

To begin, the user presses a special key sequence when ready (e.g., CTRL-ALT-

DEL). For a currently possible pass-thought system, we propose a scheme similar to

that which uses evoked P300 potentials for a spelling device for the disabled [10]. A

P300 potential is a positive potential that is evoked about 300ms after a surprising or

exciting event. By randomly highlighting the components (either textual or graph-

ical) on the desktop’s monitor, when the user sees the part of their “pass-thought”

highlighted (e.g., see Figure 7.2), they presumably generate a P300 spike as for the

spelling device [10]. The results of the P300 potential spikes are silently recorded

and determine whether the user’s P300 firing matched the expected template that

represents the account’s password. This type of scheme could be used in conjunction

with either textual or graphical passwords, where a sequence of letters, pictures, or

points on a picture are highlighted at random times (thus randomly generating the

user’s P300 potential spikes, where the verification side of the system knows when to

expect which bits).

The size of the pass-thought space for this scheme depends on the number of com-

ponents on the screen and the number of screens presented to the user. If we assume

a textual password scheme where all 95 printable ASCII characters are displayed on

each screen, and the user must select a sequence of 8 characters, the size of the full

pass-thought space is 958, approximately 53 bits. Of course, we would not expect

53 bits of security for the same reasons that we do not for textual passwords. This

pass-thought based system is shoulder-surfing resistant and otherwise provides the

same amount of security as textual passwords. One disadvantage is that given the

current state of BCI technology (P300-based approaches have shown a bit rate of 4.8

characters/minute to obtain 90% accuracy on a 36-character grid [41]), this process

would take 1 minute and 40 seconds if the performance did not degrade with a larger
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Figure 7.2: Illustration of a screen intended to randomly highlight letters (from the spelling
device in [10]). The technology exists such that this approach could be used for a pass-
thought system.

character grid.

Electrodes record the P300 spikes generated by the user. In this scheme only one

signal feature is used, since without future studies to determine the variation and

repeatability of brain signals, we only have the BCI literature to date as a guide of

what is possible. The results for BCI communication so far have low bit-rates, thus

we can only assume a yes/no answer. Thus, in the context of this scheme F (recall

Figure 7.1) is a set of P300 potentials, and F = R.

Depending on the rate of highlighted screen components, the user may not generate

a few P300 potentials during the expected time; however, the algorithm should only

record those P300 spikes that occur, not the ones that were missed. This allows the

system to be exactly repeatable, and we could use a one-way hash function h to store

the pass-thought instead of a type of error-tolerant encryption.

Authentication using this basic pass-thought system can then be performed ex-

actly as with textual passwords. Input completion occurs either after a certain number

of P300 potential spikes have been received, or by the user pressing the key sequence

again. The hashed pass-thought h(R) is compared upon input completion to the

stored pass-thought file hash for the user, and login success occurs if they match.

In addition to the system described above, there are other simple pass-thought
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systems that could be implemented using today’s technology. For example, a pass-

thought system could be built that is based on touch. In this type of system, a user

might place their palms down on a surface that raises pins that cannot be observed,

but can be felt by the user. The user would have a subset of raised pin patterns that

they should think “yes” to upon feeling; other raised pin patterns should evoke a “no”

thought from the user. The “yes” answers could be obtained using the user’s P300

potential spikes. Lack of a P300 spike could be interpreted as a “no” answer.

7.5.2 Challenge-Response Scenario: Stimulus-Based

This scenario would require the system to present the user with a set of challenge stim-

uli, and record the user’s brain signal during a short period after presentation. This

sort of challenge-response system is not cryptographic in nature, but challenges the

user with stimuli to evoke a set of one or more responses. A pass-thoughts challenge-

response system would record a user’s innate (involuntary) response to stimuli, and

optionally a voluntary response (e.g., a memory associated with the challenge). This

type of pass-thoughts system could be configured such that no user choice was re-

quired, and would not necessarily require memory on the part of the user (although

the user would likely recognize the stimuli over time).

Alternately, it could be configured such that it records a user’s voluntary response

to the challenge at a certain time, after the period whereby an involuntary response

occurs. In this configuration, the system cues the user to remember an associated

thought, thus it is a “cued-recall” style of system. For example, if images are used

as stimuli, any signs of a Visual Evoked Potential (VEP) are typically complete by

400-500ms. If the user is instructed to think of a voluntary response after the image

disappears (at 500ms), then the signal during this time could be measured.

Examples of challenge stimuli include images, sounds, or words. Almost anything

could be used as a challenge stimulus, provided that it has been shown to produce

repeatable signals as a response. The security of this scenario is defined by the number

of challenge stimuli and the number of bits obtainable by measuring each response.

The number of challenge stimuli provided in a login session should be set based on the

number of repeatable bits obtainable (from the signal associated with that particular
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stimuli), and the desired level of security for the system. For example, if only 10 bits

are obtainable from each stimuli, then 6 stimuli would provide 60 bits of security, and

if only innate responses are measured (and found to have sufficient variability between

different stimuli), then this system would be free of weak password subspaces.

Our preliminary lab experiments,2 whereby the user is presented a visual stimulus,

and is cued to think of a previously associated thought 500ms after the stimuli is

presented, have indicated that using an involuntary response is much easier than

voluntary responses with today’s EEG technology. This is due to the difficultly of

determining (in milliseconds) when the voluntary portion of a response begins. The

starting time of the response is required to align and average a number of trials to

reduce the signal-to-noise ratio of the EEG. This would make it seem that a cued-recall

style of pass-thoughts system is unlikely to work with the current EEG-based BCI

technology. However, using the innate portion of the response still appears to have

promise, and the cued-recall style system might be reconsidered when other, possibly

better methods become more convenient (e.g., functional near-infrared spectroscopy

[11]).

7.6 Discussion of Security

In this section, we discuss how pass-thought-based systems might respond to differ-

ent theft and guessing attacks. A pass-thought system is visually unobservable and

thus resistant to shoulder-surfing attacks. Pass-thoughts are also resistant to acoustic

attacks [170], but might be vulnerable to a tempest attack [80] (i.e., reconstructing

content from electromagnetic radiation). Interception attacks (i.e., when using a pass-

thought for remote authentication) can be avoided using the same protection mech-

anisms as for traditional passwords (e.g., encrypted channels and challenge-response

protocols; see Section 7.5.2).

If signal recording and processing methods advance such that they are able to cap-

ture thoughts in detail such that the thought itself (or response to a challenge) could

be used, a pass-thought would be quite difficult to communicate to a social engineer.

2Using the first 16 channels of an EEG cap that uses the International 10/20 electrode placement
system, using an amplifier gain of 5000, sampled at 4000Hz and subsequently filtered at 2000Hz.
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Using such a scheme, even if a particular pass-thought is successfully communicated,

a social engineer’s brain signal may be different than the user’s upon thinking “the

same thing” (recall Section 7.4). For these reasons, we (perhaps optimistically) hope

that the size of the pass-thought space might be sufficiently large to protect against

most dictionary attacks.

A pass-thought based system cannot avoid the threats of phishing attacks [39] and

of recording the pass-thought through either a hardware or software tap (i.e., when

the input device has been compromised). It is unclear whether any authentication

method (on its own) could be entirely immune to phishing attacks. However, if pass-

thoughts could be constructed such that each transmitted pass-thought was used only

once, we could potentially defeat passive interception attacks.

7.7 Discussion

There is a clear need for shoulder-surfing proof user authentication, especially given

the ubiquity of cell phone cameras and wireless video cameras. One of the primary

potential benefits of pass-thoughts (see Section 7) is that they are visually unobserv-

able and thus are resistant to shoulder-surfing. Pass-thoughts are also silent, and thus

are resistant to acoustic attacks [170]. Another idea for unobservable authentication

method might be to make use of eye-gaze tracking (using e.g., the LC Technologies

Eyegaze Systems [83]). Such an eye-gaze based method could permit unobservable

passwords of the same strength provided by textual or graphical password schemes by

allowing the user to select parts of the password with their eyes (e.g., by eye fixation

for a specified period denoting selection), and not echoing the input on the screen.3

While the security of such a system is comparable to the pass-thought systems that

can be built with today’s technology, advances in BCI technology could lead to much

more powerful pass-thought authentication systems (recall Section 7.4).

The ultimate feasibility of pass-thoughts is dependent upon the accuracy of a BCI

in recording the repeatable parts of a brain signal. For a brain signal to be repeatable,

the signal features that represent the intended pass-thought must be extracted. Given

3This idea has been implemented and studied for usability by Kumar et al. [81] since our original
publication of this work [153].
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the BCI research to date, we know that at least a binary response can be evoked, and

would thus be at least as effective (if not considering input time) as an authentication

method that makes use of an eye-tracking device (e.g., Eyegaze Systems). If BCI tech-

nology advances towards enabling accurate and repeatable brain signal input (which

we conjecture is likely given the recent advances), we might have a new authentica-

tion method that could solve many of the problems associated with current systems.

The flexible nature of pass-thoughts could allow for strong authentication to scale

with increasing processor speeds. Increasing the complexity of a pass-thought might

be as simple as recording the response to an extra challenge. A pass-thought system

would be visually and acoustically unobservable, defeating the threat of recorded (and

unrecorded) shoulder-surfing and recorded acoustic attack. It would be difficult for

users to share or write down exact thoughts, as the pass-thought might not be de-

scribable by communication mediums such as language, drawings, and demonstrated

movement. Users could still write down a note for themselves to remind them of their

pass-thought, which would presumably be of little value to an attacker due to the

user’s signal feature variations.

Perhaps the problem of choosing repeatable signal features will only be solved

by user training and using an authentication method that does not require exact

repeatability. It would be interesting to determine how difficult it is for most people

to control their brain state enough to reduce noise upon entering a pass-thought, and

whether mood and stress would interfere. A low training time is very important for

user acceptance, and is yet another important area for future work. Perhaps during

training, a method for providing the user some feedback about their brain signals

would be useful (e.g., a real-time changing image that represents the signal features,

where each feature is shown in different colours).

7.8 Preliminary Steps and Future Requirements

There are many unknowns to resolve before pass-thoughts might become the method

we envision. It is our hope that this idea for a pass-thought system will inspire research

into the area of BCI signal processing algorithms that retain as much repeatable

information as possible. Section 7.8.1 outlines what we believe should be the first steps
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in proving the potential of pass-thoughts, and Section 7.8.2 details other practical

requirements that must be met before a pass-thoughts system could be deployed.

7.8.1 Preliminary Steps

We have reason to believe (recall Section 7.4) that the signal encoding a transmitted

thought (or response) would be dissimilar from one user to another. No particular

experiments to verify this appear to exist; thus an interesting first step in this area

would be to confirm and/or quantify the base premise that there are differences be-

tween the brain signals generated by people who are thinking or responding to “the

same thing”. A confirmation might include a visual signal analysis, a statistical anal-

ysis of signal features, or the use of machine learning techniques to separate signal

features.

Once the base premise has been confirmed, it would be interesting to measure

the likelihood of signal collisions between different users with different pass-thoughts,

how many people have different pass-thoughts when thinking “the same thing”, and

how stable signals such as EEG and the P300 are over time.

Also, the repeatability of these signals over time will need to be evaluated. Existing

“EEG as a biometric” studies have shown that classification (to separate EEG signals

of different users) works well using data from a single session, but no studies have

yet examined how much day-to-day variability exists. If the signals shift slightly over

time, then it may be possible to update the signal template used when it goes beyond

a pre-specified drift threshold. Also, it is important to study whether individuals with

mental disorders have unique repeatability considerations.

Finally, how users would accept this technology is important to determine. As

discussed in Section 8.3.2, many users are uneasy about using eye-scanners, so it is

conceivable that people will think that a pass-thought reader is actually interpreting

their thoughts. If/when the above steps achieve positive results, and the necessary

hardware is developed to make a usable pass-thoughts system, this issue must be

examined.
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7.8.2 Future Requirements

If the preliminary experimental steps outlined in Section 7.8.1 provide evidence for

the base premise, there are still practical considerations that must be met prior to

deploying a pass-thoughts system.

The most common method to record brain signals for BCIs is an electrode cap

to record EEG signals. This method is known to be noisy, with a long setup time.

Although electrode caps are fine for a proof-of-concept, they would not provide ac-

ceptable usability in most real-world systems. Thus a better hardware interface is

required. A hardware interface that has the look and feel of headphones may feel less

awkward than electrode caps. A wireless headphone-style electrode interface might

have electrodes lining the band going over the head, around the ears, and/or on a

small disc that is attached to the hardware that extends towards the back of the skull

(to place electrodes at the top of the skull if necessary). For example, Figure 7.1

depicts the user wearing such an interface that wirelessly transmits S. If the device

is wireless, of course the communication channel between it and the receiving device

must participate in a cryptographic protocol that prevents eavesdropping, capture,

and replay.

This sort of BCI hardware is already in development [107]. It is possible that the

number and placement of electrodes of such an interface could obtain an acceptable

signal. An acceptable number of electrodes has experimentally been found to be as

low as 8 [93], and the optimal placement of electrodes depends on the signals the

BCI wishes to focus upon (e.g., event-related potentials, slow cortical potentials, or

mu-rhythms) [166]. We hope that the cost of such devices will eventually decrease;

present portable BCI systems cost approximately $4,300 EUR [58].

7.9 Summary

We propose the high-level concepts of a novel idea for user authentication that we call

“pass-thoughts”, whereby a user simply thinks their password, transmitting it directly

to a computer using a BCI. While the potential characteristics of such a system are

interesting, it’s not clear at this point whether a production-ready system would ever
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be possible. A tremendous amount of work remains to verify whether even the basic

ideas will work in a lab environment. While this lab work is beyond the scope of this

thesis, we hope to continue to pursue this path in future work.



Chapter 8

Providing Context: Discussion and Conclusions

8.1 Introduction

In Chapters 4, 5, and 6, we have shown how predictive models can serve as a starting

point for creating attack dictionaries for five different types of knowledge-based user

authentication schemes. To recap, these five schemes are: traditional text-based

passwords, passphrases, recognition-based graphical passwords (i.e., Faces and Story),

pure-recall graphical passwords (i.e., DASJ), and cued-recall graphical passwords (i.e.,

PassPoints).

Resistance to dictionary attacks is one of many important properties of an au-

thentication scheme. There are of course other attacks to consider, and other con-

siderations (than security) when deciding what authentication scheme to adopt or

deploy. We survey a set of schemes reviewed in Chapter 3, and perform a critical

analysis of their resistance to dictionary and other attacks in Section 8.2. We discuss

other practical factors (e.g., usability and cost) in Section 8.3. Section 8.4 discusses

resulting recommendations that reflect our updated knowledge. Finally, Section 8.5

discusses future work and concludes this thesis.

8.2 Critical Analysis of User Authentication Schemes and Attacks

Here we perform a critical analysis of user authentication schemes (reviewed in Chap-

ter 3) and their resistance to various types of attack. We consider the following

attacks: brute force attack (recall Section 2.2.1), dictionary style attacks which rely

on reduced entropy of user choice (recall Sections 2.2.2, 4, 5, and 6), generative attacks

which rely on available statistics for similar populations or for the user (recall Sec-

tion 7.2), shoulder surfing (recall Section 7.2), and social engineering attacks (recall

Section 7.2).

146
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Table 8.1 compares vulnerabilities to the known attacks discussed in Section 7.2.

If the scheme is vulnerable to the attack in an atypical way, a special footnote is

provided in place of a ‘y’ in the caption. If there is reason to believe that a scheme

may be vulnerable to an attack, but no supporting analyses have been performed

yet, it is marked with a ‘?’. Finally, a blank means that there are no foreseeable

applications of that attack to the particular scheme.

In addition to the schemes discussed in Chapters 2 and 3, we include alternatives

that do not rely on a user’s memory: static and behavioural biometrics and physical

tokens. Static biometrics measure unchanging physiological traits of a user such as

fingerprints, the iris, and facial features [69]. Behavioural biometrics include keystroke

dynamics [100], voice [99], and handwriting [126]. Physical tokens include smart

cards [1], zero-interaction authentication (ZIA) [27], and passcode generators such as

SecureID tokens [137].

In summary, Table 8.1 shows that all schemes are vulnerable to some attacks.

In the case of behavioural biometrics, only one particular type (handwriting) has

been analyzed for generative attack, and it was found to be vulnerable. Other be-

havioural biometrics have yet to be examined for vulnerabilities to generative attack.

The only schemes that we can be sure are not vulnerable to brute-force or dictio-

nary attacks are those with large theoretical entropy that do not involve user choice;

for example, Weinshall’s protocol uses system-assigned secrets and has a large full

space (although this extra security comes at the cost of a long training time of 1.5-3

minutes). Shoulder-surfing is another common problem: the only schemes that we

can say are secure against it are some biometrics and physical tokens. Finally, social

engineering is another common problem: the only schemes that are not vulnerable to

this style of attack are Déjà Vu (assuming that the random art images used cannot

be described as indicated by Dhamija et al. [38]), and behavioural biometrics.

8.3 Additional Considerations

There are of course other considerations, aside from security, that are important in

deciding an authentication scheme to adopt or deploy; this is why passwords are still

commonly used. For example, a smart card is very secure in terms of the entropy it
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Category Authentication Method BF DA GA SE SS

Text Text Passwords y y y
Passphrases y y y
Inkblot Authentication [145] ? y y

Graphical
Pure-Recall DAS/Pass-Go [72, 146] y y y
Graphical PassPoints [164] y y y
Cued-Recall Blonder’s Scheme [15] 
 y y

Picture Password [71] 
 y y
VisKey [139] 
 y y
V-Go [120] 
 y y
Cued Click-Points [25] ? y y

Graphical Passfaces [131] y y y y
Recognition- Story [34] y y y y
Based Déjà Vu [38] y y
Graphical
Challenge-
Response Weinshall’s Protocols [161] y †
Other Static Biometrics • ‡ �

Behavioural Biometrics • ◦ �
Physical Tokens �

Table 8.1: Existing authentication schemes and attack types. A scheme is vulnerable
to an attack if it is marked with a ‘y’. We consider the following attacks: brute-
force attack (BF), dictionary attack (DA), generative attack (GA), social engineering
(SE), and shoulder surfing (SS). 
 Under conjecture that this scheme will suffer from
similar attacks as shown for PassPoints. † Weinshall’s Protocols have been shown
to be susceptible to SAT solver attacks (see Section 3.3.5). • Hill-climbing attacks
[155] can be successful when feedback regarding the matching scores of each guess
can be observed by the attacker. ‡ Some static biometrics have been shown to be
easily forged using a stolen physical sample of the user’s biometric (e.g., a fingerprint
[91]). � Shoulder-surfing (with cameras) is a threat for biometrics whose features
can be reconstructed from an image (e.g., a fingerprint). ◦ This has been shown for
handwriting biometrics [6, 5], but may also be the case for others, particularly when
the information used is publicly available. � A static image of a handwriting biometric
allows for easier generative attacks and attacks by skilled forgers [5]. � Users can be
tricked into “lending” physical tokens, or they can be stolen.
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provides, but it is costly to deploy and can be lost or stolen. Biometrics are easy for

people to use as they need not recall anything, but if the biometric data is stolen,

an attacker could masquerade as the user, and the user cannot easily change their

biometric. Here we discuss a set of other problems that exist with otherwise secure

systems; usability in Section 8.3.1, acceptability in Section 8.3.2, changeability in

Section 8.3.3, cost in Section 8.3.4, and loss or theft in Section 8.3.5.

8.3.1 Usability

Usability is a broad topic, which can be defined as “The extent to which a product

can be used by specified users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use” [65]. The usability of an authentication

system includes its accessibility, memorability, and convenience.

Accessibility refers to barriers the user may experience in terms of being able

to complete the authentication task. Accessibility barriers include physical (e.g., a

disability that prevents a user from using a mouse), cognitive (e.g., reduced memory

skills), sensory (e.g., blind or aging users may have difficulty seeing an image), and

technical (e.g., requiring special hardware, software, or technical expertise) [133]. For

example, biometrics have the problem that some users are un-enrollable [29], thus

backup provisions must be made. For fingerprint biometric systems, some people are

not able to use them due to loss of fingers, or poor fingerprint definition.

Memorability refers to knowledge-based systems and whether users find it easy

to remember the required information to login, both in the case of a single account

using the system, and multiple accounts using the system (which may suffer from

interference). For example, although using two graphical passwords reduces success

rate in click-based graphical passwords [24], findings for interference in graphical

passwords are more positive than for PIN numbers: Moncur et al. [96] show that five

recognition-based graphical passwords were forgotten less often (as measured by three

login failures) than five PIN numbers.

Convenience includes the time to enroll, authenticate, and replace (when forgotten

or lost) [133]. If any of these tasks take too long, users will be annoyed with the system

and may resort to insecure measures such as disabling the system. The time to
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authenticate is arguably the most important, as this is presumably the most frequent

task a user must complete.

8.3.2 Acceptability

Coventry [29] states that for consumers to adopt biometrics, they must find that

the technology is: socially acceptable, appropriate for a given environment, filling a

perceived need, usable, and not destructive to personal privacy. For a user to find

a technology socially acceptable and appropriate for a given environment, they must

not feel embarrassed to use the system in its intended environment (e.g., trying many

times before success in a public place).

Usability factors that could influence acceptability are discussed in Section 8.3.1.

Usability might also relate to a user’s perception of whether an authentication system

is an imposition. For example, some users may object to carrying physical tokens with

them, as it could result in lost productivity in the event that the token is lost, stolen,

or simply left at home (or elsewhere).

A user’s perception of how an authentication measure impacts their privacy (re-

gardless of whether it is accurate), is an extremely important factor as to whether a

system is widely accepted. For example, some users might feel uneasy about iris or

retina scanners, as some studies report that the eye provides information about your

health and/or personality [7]. One could imagine this also being a problem with other

biometrics.

8.3.3 Changeability

If the user’s authentication information is compromised, we must be able to replace

this information (and revoke any old password or access credential). For example,

static biometrics cannot be (easily) changed, which is a major drawback. Because

biometric information is valid for the lifetime of the user and is subject to theft, such

information should not be used as keying material for remote authentication purposes.

This issue becomes particularly important if many different systems are using

static biometric authentication; it is analogous to the problem of having the same

password on many different systems, whereby an attacker with a user’s compromised
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biometric might be able to gain access to many of the user’s accounts.

8.3.4 Cost

The cost of initial setup and operating costs of an authentication system (in terms of

both time and money [133]) are extremely important considerations. The relatively

low expense of implementing and maintaining passwords is a major reason for their

ubiquity. Items that factor into the cost of initial setup of an authentication system

include initial hardware and software costs, cost of training and enrolling users, and

the cost of a backup method (for users who cannot access the primary system). The

cost of operating the authentication system includes the cost of software or hardware

maintenance, and of replacement (e.g., resetting forgotten passwords, or replacing

lost physical tokens).

The issue of cost is very dependent on the environment in which the scheme will

be deployed; to a large company that is highly concerned about security and has the

resources, a higher-cost system might make more sense if it provided better overall

security. However, to a small start-up company offering an online service, low cost

could be the most important consideration for a system that authenticates their users.

8.3.5 Loss or Theft

This includes physical loss and theft of a token (e.g., a smart card or passcode gener-

ator) that is required for successful authentication. If such a token is lost or stolen, it

renders the system temporarily inaccessible to the user. Further, if possession of the

token is the sole authentication factor, or if it is combined with a weak password as

a second factor, loss or theft of the token could allow an attacker to masquerade as

the legitimate owner.

8.4 Resulting Recommendations for Administrators

One lesson that we can take away from our results is that graphical passwords are still

immature, and are only beginning to undergo serious analysis. Our results indicate

that for both schemes analyzed (DAS and PassPoints), weak password subspaces
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exist, and without further study it is difficult for us to generally recommend their

use at this point in time. However, DAS may still prove to have better effective

security than text passwords; the smallest weak password subspace identified in this

work is 10 bits larger than the smallest text dictionary, but we caution that if other

complexity properties are considered (such as the number of turns) this may change.

The implementation enhancements discussed in Sections 5.6 and 6.8 could make these

schemes secure enough to use in some environments, but hesitate to recommend their

use with these enhancements until the updated schemes are re-evaluated to determine

whether new patterns in user choice emerge, e.g., for proactive checking when a user’s

first choices are disallowed, and whether usability remains acceptable.

Although our results do not allow us to (at present) recommend the general use of

the particular schemes analyzed, they may be suitable for some specific environments.

When choosing a suitable method of user authentication for a particular environment,

an administrator should consider the following questions:

• What are the security requirements (i.e., would it be acceptable for confiden-

tiality, integrity, or accessibility to be compromised)? For example, is account

lockout a reasonable defense despite the denial-of-service risk?

• Is the system to be remotely accessible?

• Are there any special considerations for the user(s), e.g. accessibility, usability,

acceptability, loss/theft, or cost? Recall Section 8.3.1.

• Has the authentication scheme undergone thorough analysis, and if so, how

large is the smallest weak password subspace?

Due to the number of factors and the variety of possible answers for each of these

questions, there is no general set of recommendations that we can give administrators

at present. Therefore, we consider only a few example scenarios to illustrate how

schemes with different levels of security can be acceptable in different environments.
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8.4.1 Example Scenarios

Our example scenarios are chosen to represent different levels of desired security: a

bank ATM environment that only requires security against online attack, a mobile

device where data integrity is important, and a mobile device where both data in-

tegrity and confidentiality are important. Of course, one can imagine many other

scenarios that have different requirements; our hope here is to illustrate how some

schemes, despite having weak password subspaces, can still provide sufficient security

for use in certain environments.

Environments Where Offline Attack is Not a Threat

Consider bank ATMs: an environment where it is accepted that offline attack is not

a relevant threat. The authentication process requires both a bank card (a “what

you have” factor), and a PIN number (a second, “what you know factor”). The PIN

is a 4-digit number, which has 13.3 bits of theoretical security, and alone would be

vulnerable to an offline attack. ATMs normally lock out an account after three un-

successful login attempts – a strategy that increases security against guessing attacks,

but decreases availability. Further, banks typically limit the amount of risk associated

with a guessed PIN by limiting the amount of cash that can be withdrawn each day.

In this environment, a PIN number, despite being vulnerable to an offline attack,

has provided sufficient security for bank ATMs. Thus, other authentication schemes

that provide at least 13.3 bits of effective security, with similar additional factors (as

discussed in Section 8.3) might provide a competitive (or even better) alternative to

the PIN number in this environment.

Two of the graphical password schemes shown in Table 8.1 have been found to

provide unsuitable security even in this environment: Faces and PassPoints. Davis et

al. [34] show that 10% of passwords in Faces can be guessed in 2 guesses. In Section

6.6 we show that 8-11% of passwords in the PassPoints scheme can be guessed in 3

guesses using a similar attack strategy. Story [34] was shown to have 10% of passwords

guessed in 35 guesses; although this could be secure against online attack with lockout

after 3 unsuccessful guesses, it is rather close, and thus we hesitate to recommend it

even for this environment.
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The authentication schemes from Table 8.1 that have been analyzed and not yet

found to be vulnerable to online guessing attack, are (to date): text passwords and

passphrases [82], inkblot-based passwords [145], DAS (see Chapter 5), and the other

schemes that do not involve user choice (Weinshall’s Protocols [161] and biometrics).

Graphical password schemes based on recognizing images have been shown to suffer

less interference than PINs [96], however we do not consider these here as there is no

analysis that supports their effective security.

Studies to date have shown that all of these schemes appear to have acceptable

usability, except Weinshall’s protocols which have a much longer login and training

times. Regarding memorability, DAS/Pass-Go was found to have 21 forgotten pass-

words in the three-month user study (out of 167 users), providing a memorability rate

of 87.4% (if we assume that each user forgot a password no more than once), which

is a better rate than shown for PIN numbers and for 6-character text passwords,

of 65% and 70% respectively, by and Dhajima et al. [38] (measured by 3 successive

failed logins). This would indicate that DAS/Pass-Go could be considered a reason-

able alternative to PIN numbers (as it has better security, despite its weak password

subspaces, than PINs; and better memorability). However, further study is required

to show whether performance and interference results for this scheme are competitive

to PINs. Further, if any graphical password scheme were to replace an ATM’s PIN,

care would be needed in redesigning the ATM to ensure that the screen is much more

easily shielded from shoulder-surfers.

Finally, biometrics would provide enough security to replace a PIN; however, ac-

ceptability and possibly cost (depending on the biometric) are considerations that

make biometrics (static or behavioural) less appealing than PINs in this environment.

Also, a backup method would be required for users that are unable to enroll.

In conclusion, at this time, there is not sufficient evidence to recommend any

scheme that has been analyzed to date as a replacement for PINs. Biometrics might

serve best as an option for users that can enroll, and have difficulty remembering

their PIN, if the bank believes the cost (of readers, installation, and enrolling users)

will be offset by the cost of resetting PINs.
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Mobile Devices Requiring Data Integrity, Not Confidentiality

Consider a mobile device whose owner only cares about the integrity of the data it

contains, rather than its confidentiality; for example, a PDA with no sensitive/private

information stored. In this case, the user wants to ensure that no one is able to pick

it up for a short time when it’s left somewhere and modify or delete their data (e.g.

calendars, phone numbers, etc). If the device is stolen, it is inconvenient to the

user, but there are (by assumption), only minor concerns of confidentiality. A simple

password would provide sufficient security, so long as it is expected to provide at least

2 days worth of offline attack protection.

With our current assumptions (see Section 5.4) about MD5 hashing and personal

resources of 8 processors (2 quad cores), this translates to a threshold of te = 44

bits (recall Definition 1). Every knowledge-based scheme that has been analyzed to

date has weak subspaces less than this size. It is however possible that increasing

the cost of hashing could help with some schemes. A reasonable increase in the time

for hashing would be to make each hash take no more than 0.1 seconds, as this is

about the time limit before users start to notice a delay [94]. As discussed in Section

5.4, approximately 1.22 × 107 MD5 hashes can be performed per second on a single

2.66GHz processor, and 1.22×106 = 220 MD5 hashes can be performed in 0.1 seconds.

The hashing algorithm can thus be modified to add 20 bits of security before a delay

is noticed, making a scheme with a smallest weak subspace of 24 bits acceptable for

use in this scenario.

Of the analyzed knowledge-based schemes, the one with the smallest weak sub-

space to date is DAS: Class D1b intersected with Class D2 is 31 bits and guesses about

16-17% as shown by Tao [146]. However, as previously mentioned, performance and

interference still must be studied in this scheme to determine whether it is comparable

to text passwords. Weinshall’s protocols could also be secure enough for this scenario,

since there are no weak password subspaces (the images are system-assigned), but its

usability suffers from long login and training times. Finally, some biometrics could

provide enough security here; however, acceptability and cost are considerations that

make biometrics (static or behavioural) less appealing.

In conclusion, at this time, when considering both security and usability, there
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is not sufficient evidence to recommend any scheme that has been analyzed to date

as a replacement for regular passwords with password stretching of at least 23 bits

to compensate for its smallest weak password subspace of 21 bits [82]. Twenty-three

bits of stretching would likely be noticeable to the user (approximately a one second

delay), but might still have better performance results compared to the remaining

alternatives.

Mobile Devices Requiring Data Integrity and Confidentiality

Consider a user who owns a laptop that contains highly sensitive corporate data

(e.g., the design and marketing plan for a new product). The company would like to

keep this data confidential until the product is scheduled for release in a year. The

password in this case not only controls access to the laptop, but also is used to either

generate a key (or decrypt a key) that decrypts the data on the hard drive. The

company would thus like to have at least one year of security against offline attack in

the event that the laptop is lost or stolen.

With the same assumptions about MD5 hashing and personal resources of 8 pro-

cessors (2 quad cores), this translates to a threshold te = 51.5 bits (recall Definition 1).

There are weak password subspaces of this size for most schemes studied, even when

a reasonable amount of password stretching is assumed. The exceptions are DAS

(with at least 20 bits of password stretching) and Weinshall’s protocols; however,

as mentioned in the last section, DAS still must be evaluated for performance, and

Weinshall’s protocols have usability problems. Thus, in this environment, a second

factor is necessary to increase the level of security, e.g. a physical token or biometric.

One commonly deployed solution as a second factor is a passcode generator such as

RSA’s SecurID, which is synchronized with a remote server to display a new number

every minute. The user enters both the number and a memorized password. How-

ever, such a method is more appropriate for remote access (as it requires an Internet

connection for verification of the number it generates). Alternately, if the user can

enroll, a biometric may be a more appropriate second factor, as any physical token

used to access a mobile device might be stored near the device itself (so theft would

also obtain the physical token). However, physical tokens may be necessary for those
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users who cannot enroll in the chosen biometric. Both of these solutions will have

additional costs associated with the hardware readers, but in such a high-security

scenario, the cost would likely be considered worthwhile.

8.5 Conclusions and Future Work

This thesis shows that some established attack strategies for knowledge-based user

authentication methods can be generalized, describes how they work against two

previously unanalyzed representative graphical authentication schemes, and discusses

other types of user authentication schemes that might be more immune to these (and

other) attacks, such as “pass-thoughts”.

Our results, discussed in Section 8.5.1, indicate that the method we introduce and

call predictive modelling can be applied to previously unanalyzed schemes to identify

weak password subspaces. We do not view this as a negative result, but as a step

towards better understanding how to evaluate the security of new schemes prior to

their widespread deployment. Section 8.5.2 discusses the specific conclusions that fall

from our results. We end with a discussion of future work in Section 8.5.3.

8.5.1 Summary of Results

In Chapter 4, we introduce the idea of predictive models, and how they map to existing

authentication schemes and attack methods. In Chapter 5, we used predictive models

to demonstrate three weak password subspaces for DAS: Class D1b (global symmetry),

Class D2 (4 or fewer strokes), and Class D1b ∩ Class D2. In Chapter 6, we used

predictive modelling to demonstrate three weak password subspaces for PassPoints:

Class C2 (based on human-computed data), Class C3-DIAG (the diagonal click-order

pattern), and Class C2 ∩ Class C3-DIAG. These results add two more schemes to

the body of literature supporting our hypothesis that other knowledge-based user

authentication methods are weak when based on user-chosen secrets. This result,

along with earlier results by others [77, 167, 34, 82], would suggest the emergence

of a general pattern that calls into question the effective security of any candidate

knowledge-based authentication scheme, when based solely on user-chosen secrets.
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Naturally, these security analyses lead us to a set of specific tentative recommen-

dations that may help improve the security of DAS and PassPoints, and to outline

existing and new ideas for future work that might prove to reduce the problem of pre-

dictable patterns in user choice. Finally, we propose a new idea for user authentication

that we call “pass-thoughts” in Chapter 7, which may prove to have some interesting

characteristics that might lead to better immunity from the attacks discussed in this

thesis.

8.5.2 Conclusions

One of the biggest problems with new knowledge-based authentication schemes is

that their designers often fail to recognize that patterns in user choice could result in

weak password subspaces. Our results contribute to the literature showing that the

effective security of a scheme often does not match its theoretical security, and that

an analysis of patterns in user choice is necessary to understand the extent of this

problem. The primary lesson that we can take away from our results is that cautious

optimism is a good policy when considering newly proposed authentication schemes,

at least until a few independent analyses have been performed to test for patterns in

user choice and show that there are no weak subspaces.

A secondary lesson that we can take away from our results is that graphical pass-

words are still immature, and are only beginning to undergo serious analysis. Our

results indicate that for both schemes analyzed, weak password subspaces exist, and

thus it is difficult for us to generally recommend their use at this point in time.

However, DAS may still prove to have better effective security than text passwords;

the smallest weak password subspace identified in this work is 10 bits larger than

the smallest text dictionary, but we caution that this may change if other complex-

ity properties are considered (such as the number of turns). The implementation

enhancements discussed in Sections 5.6 and 6.8 could make these schemes secure

enough to use in some environments, but hesitate to recommend their use with these

enhancements until the updated schemes are re-evaluated to determine whether new

patterns in user choice emerge, e.g., for proactive checking when a user’s first choices

are disallowed, and also to determine whether usability is acceptable.
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Finally, a third lesson that comes out of our work is that we can be proactive about

patterns in user choice prior to deployment. Using predictive models to evaluate

a scheme can reveal guidelines that wouldn’t otherwise be considered until attacks

are reported, and users inconvenienced. They also allow us to understand which

target deployment environments are sensible; for example, even though we found

DAS to have a weak password subspace of 31 bits, it may still provide sufficient

security to replace PIN numbers. On the other hand, for PassPoints using the pool

image, we were able to guess over 10% of passwords in fewer than 100 guesses using

a combination of our weak password subspaces (cf. Figure 6.7); this result makes it

difficult to recommend PassPoints (with the parameters set as proposed) even for PIN

replacement.

8.5.3 Future Work

Based on our results, we believe that promising directions for future research include

research into usable methods for the system-assignment of passwords, and developing

non-standard mnemonic strategies for users. In otherwise secure authentication sys-

tems, dictionary-style attacks are only possible because of patterns in user choice, thus

one possible avenue for protection is to have the system assign random passwords. If

passwords are uniformly random, then the full password space provides an accurate

representation of the security. The problem with this approach is memorability [169].

Future directions of interest are thus to see whether there are ways to make some

form of system-assigned password usable, particularly in terms of memorability. We

are aware of three such approaches that we discuss further below: one that focuses

on making system-assignment memorable (e.g., using mnemonics), another that en-

courages different mnemonic strategies that should produce more random passwords,

and another to use persuasion to help users choose passwords that are more random.

It is possible that certain systems, e.g. types of graphical password, would nat-

urally achieve more memorable system-assigned passwords. Indeed, Weinshall [161]

found that a recognition-based system using system-assigned images had high success

rates averaging around 95% (although only for a sample size of nine participants).

However, this system has the usability problems of a long training and login time,
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and may suffer worse interference due to the large number of images used. To the

best of our knowledge, there are no other documented evaluations of system-assigned

graphical passwords. For system-assigned text passwords, one idea for increasing

memorability is to also provide a corresponding mnemonic passphrase. Jeramyan et

al. [73] propose using variations of newspaper headlines for this purpose, although the

resulting memorability of their system has not yet been examined.

Mnemonic strategies to aid user’s retention of stronger (but not system-assigned)

passwords could also be used. One idea for graphical passwords was posited by Salehi

[138], who suggested that a user provide a story to the system, and then the system

fetches a picture (or sequence of pictures) that contains the story items. The user

then selects the image(s) and click-points based on their pre-constructed story. If the

users must create a story to begin password creation, they cannot skip the mnemonic

story creation altogether, as was reported to be the case for 50% of users in the Story

scheme ([34]; recall Section 3.2.2).

Inkblot authentication [145] is an existing variation of the idea of encouraging

different mnemonic strategies; here the user is cued with abstract “inkblot” images in

which people tend to see different things. The user enters a two-character associa-

tion for each of 10 images shown, creating a theoretically more secure text password

(recall Section 3.2.1). One of our related ideas for text passwords is to help users

create customized passphrases, such that they would not be susceptible to guessing

based on popular phrases available online [82]. If users create custom passphrases,

based on existing user-specific knowledge, it might have similar memorability to more

traditional passphrases and be less susceptible to automated attack. For example,

one way of implementing this idea would be to provide a large set of story templates,

whereby the user “customizes” the story such that it contains nouns and verbs that

are meaningful to them. As long as each template had at least 4 items, and the

user is asked to use at least two characters per item, the theoretical entropy of these

passphrases might be less susceptible to attack than passphrases that users currently

select. This sort of system must be carefully designed to ensure that the templates

do not leak too much information, and that each user-defined noun or verb has more

than a small number of likely possibilities, and could not be dramatically narrowed



161

down by character frequency tables combined with the context.

Using persuasion to help users choose more random passwords is yet another

possibility currently under investigation by Chiasson et al. [48, 23]. The general idea

is that users are encouraged to choose passwords based on suggestions by the system,

but are permitted to have the system suggest other possibilities if he/she does not like

what the system last provided. For their example using CCP [23], the user is shown

a viewport on a randomly placed part of the image, from which they are permitted to

choose a click-point. If users do not like where the viewport is positioned, they can

press a button to place the viewport over a new randomly selected part of the image.

Forget et al. [48] also introduce the idea of using this concept for text passwords,

whereby the user is displayed a password with some characters pre-assigned; the user

then fills the remaining (blank) characters to complete the password.

Although the ideas discussed herein may prove useful if they are shown to im-

prove both memorability and security, these methods are still susceptible to shoulder

surfing and social engineering, and might suffer from users writing their passwords

down (which in turn could lead to physical theft, e.g., through dumpster diving). To

this end, we hope that our novel idea for user authentication called “pass-thoughts”,

described in Chapter 7 might prove less vulnerable to such problems, or motivate

other solutions. There is an abundance of research required to determine how feasible

this idea could be, as outlined in Section 7.8, which we hope to pursue in future work.
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Chapter 9

Appendices

9.1 Appendix A - Results for DASJ Password Subset Sizes

Tables 9.1, 9.2, and 9.3 give sample results computed using the method outlined in

Section 5.3.2 for various values of Lmax and X, under different grid sizes. Values given

are log2(number of passwords). The size of the full DASJ password space (without a

limitation on the number of strokes) was double-checked and essentially agrees with

the results given in [72].

Tables 9.4 and 9.5 give sample results that show how much of the password space

is composed solely of strokes of length ≤ 2 and of length = 1 respectively. Tables 9.6

and 9.7 give results for the effect of having no dots or strokes ≤ 2 in a DAS password.

The data in Tables 9.4 to 9.7 are for 5 × 5 grids.
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9.2 Appendix B - Other Images Used in Lab Study

(a) truck [49] (b) paperclips [51]

(c) bee [122] (d) cdcovers [142]

(e) smarties [124] (f) pcb [52]
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(g) corinthian [50] (h) tea [163]

(i) philadelphia [163] (j) mural [163]

(k) icons [148]

Figure 9.1: Subset of images used in the lab study. See Figure 6.4 for cars and pool. The
remaining four images used (citymap-nl, citymap-gr, faces, and toys) are available from the
author; we were not able to obtain permission to reproduce them herein.


