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Abstract—We explore the feasibility of Tacit Secrets: system-
assigned passwords that you can remember, but cannot write
down or otherwise communicate. We design an approach to
creating Tacit Secrets based on Contextual Cueing, an implicit
learning method previously studied in the cognitive psychology
literature. Our feasibility study involving 30 participants indi-
cates that our approach has strong security properties: resistance
to brute-force attacks, online attacks, phishing attacks, and some
coercion attacks. It also offers protection against leaks from other
verifiers as the secrets are system-assigned. Our approach also
has a high login success rate and low false positive rates. We
explore the trade-offs of different configurations of our design
and provide insight into valuable directions for future work.

I. INTRODUCTION

The security of user-chosen passwords has become a serious

concern to organizations and individuals alike. Dramatic im-

provements have been made in offline guessing (or trawling)

attacks [1], [2] and targeted attacks that exploit a user’s reused

passwords [3]. The threat of these attacks is growing with the

increasing amount of publicly leaked password data. Perhaps

the most damning are attacks that combine leaked password

data with personal information—such online targeted pass-

word guessing attacks have been shown to guess over 32-73%

of passwords within 100 attempts [4].

Password managers offer one solution to these prob-

lems by allowing users to generate and securely store ran-

dom passwords. However, many users distrust them given

recent password manager data breaches [5] and software

vulnerabilities[6]. Another solution, for a small number of

accounts with high security requirements, is to assign users a

random, system-assigned password; however, these are well-

known to have significant problems with memorability [7] and

thus users writing them down. Writing down passwords is

only secure in some situations, e.g., when they are stored in a

physically secured location such as a safe. For example, an or-

ganization that uses a password or PIN to access an important

safe or server room is unlikely to have secure physical storage

nearby. This problem motivates our research into a completely

new approach for system-assigned passwords.

In the present work, we investigate the feasibility of random,

system-assigned passwords that can be ‘remembered’ without

being written down. We explored literature on implicit learning

and identified a promising method called Contextual Cueing
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(CC). In CC, users are trained to implicitly learn the location

of a target item on a display full of many distractors. Each

display can be thought of as a character in their password, and

the entire password is a set of such displays. Knowledge of

the password is demonstrated by a challenge-response system

that authenticates based on performance metrics that indicate

the password was implicitly learnt.

The result is a method of creating what we call Tacit Secrets:

system-assigned passwords that can be remembered, and also

cannot be written down or explained to others. The use of

CC may also have interesting properties for accessibility; for

example, it has been found to remain intact in several neu-

rological and mental disorders [8], and to work with subjects

having dyslexia [9], [10]. Our feasibility study indicates that

our design has high authentication success rates (86-90%, de-

pending on the configuration), and low false positive rates (0.8-

9.2%, depending on the configuration). Our security analysis

indicates that our approach is resistant to offline guessing

attacks, online guessing attacks, phishing attacks, and some

types of coercion attacks. It is also resilient to leaks from other

verifiers due to the Tacit Secret being system-assigned. Finally,

it also provides some resistance to observation attacks, such

that a successful attack would require multiple observations.

Use Case. Tacit Secrets could be used for any system

requiring the strong security guarantees offered by system-

assigned passwords. However, our current design has long

login times that limit its practicality. We believe the current

design we studied would still be useful in some environments

with high security requirements, e.g., unlocking a critical

system configuration terminal, unlocking a high-security vault

or room, unlocking an encrypted file, etc. If future work shows

the implicit memory effect lasts for longer time periods, it may

also be useful for fallback authentication.

Contributions. Our contribution is the design and feasi-

bility study of a method for producing Tacit Secrets, which

the user can remember, despite the fact they cannot write

them down. This design should be of interest for use in the

environments discussed above. Also, our positive feasibility

study results demonstrate that implicit learning can be used to

produce a user authentication system with high accuracy, and

strong security properties, and as such might be employed in

future authentication systems research.

The remainder of this paper is organized as follows. Related

work is discussed in Section II. Our Tacit Secrets design

is presented in Section IV-C. Our feasibility study design is
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described in Section IV, the results of which are presented in

Section V. Section VI presents our analysis of the performance

of different configurations of our design and Section VII ana-

lyzes the security of the recommended configurations. Section

VIII discusses limitations to consider when interpreting our

results. We conclude the paper with a discussion of our results

and in Section IX and future work in Section X.

II. RELATED WORK

We focus on the related work most relevant to our approach

to creating Tacit Secrets: system-assigned secrets, authentica-

tion systems that employ implicit memory, and authentication

systems that have coercion-resistant properties.

A. System-Assigned Secrets

System-assigned passwords are much stronger than user-

chosen passwords, but the practice is well-known to lead to

problems such as poor memorability and requiring a written

copy for a long period of time [7]. Writing down passwords

is insecure unless the written copy is stored in a physically

secure location, or using strong encryption on a device. Some

attempts have been made to improve the memorability of

system-assigned secrets so they may be usable. Schechter et

al. [11] examined the impact of a training period of a few

weeks that employed spaced repetition. The findings were that

88% of users were able to recall their passphrase after 3 days,

however the training period was quite long (about 12 minutes

over the course of 10 days on average) for memorizing the

full 56-bit secret. Shay et al. [12] investigated the potential of

using random system-assigned words as opposed to randomly

assigned characters, and encouraging users to imagine a scene

that links them. Their results were unfortunately not very

positive; only 51% could recall the passphrases after 2-5 days.

Jeyaraman and Topkara [13] proposed random generation of

a password and automatically creating a mnemonic phrase

to help recall, but its efficacy is unknown. Al-Ameen et al.

[14] proposed a series of cues to aid recall of system-assigned

passphrases; pilot studies show this method holds promise as

all users recalled their phrase after one week. However, the

security offered by the system tested is limited as it has only

a 28-bit key space, is vulnerable to coercion, phishing, and

observation attacks involving a single session. We study Tacit

Secrets with the goal of achieving strong security desired from

system-assigned secrets, but that can also be recalled.

B. Authentication Systems That Employ Implicit Memory

Denning et al. [15] proposed an authentication scenario

which employs a priming effect as a mechanism using implicit

memory. Their suggested image-based authentication system

used pairs of images; that is, complete and degraded counter-

part images. They initially showed sets of complete images and

for later authentication, degraded images are exposed through

a familiarization task. Since the scheme involves the conscious

learning of the images, it does not provide any resistance to

coercion attacks. Furthermore, the requirement to provide a

large set of images makes the system less deployable.

The work most similar to our approach is the scheme of

Bojinov et al. [16], as it also offers the property that users are

unaware of their secret and thus cannot easily communicate it.

Their scheme used the Serial Interception Sequence Learning

(SISL) task originally introduced by Sanchez et al. [17]. Sub-

jects were trained to implicitly learn a random key sequence

using a game similar to the Guitar Hero video game. After a 30

to 45 minute training period, they were tested through a session

of playing the same game. The authentication process in this

scheme is based on the users’ performance (the percentage of

the correct responses and RT) on the learnt sequence versus

random ones. Only 71%, 47%, and 62% of participants could

successfully authenticate using this method immediately, 1

week, and 2 weeks later respectively. No further investigations

of this system have been performed. Tacit Secrets has substan-

tially better authentication success rates, registration times, and

login times. Other relevant security properties, such as false

positive rates and resistance to observation attacks were not

evaluated for this system.

C. Coercion Resistant Authentication

Since one of the properties of Tacit Secrets is its resistance

to certain types of coercion, we discuss other approaches that

provide some degree of coercion attack resistance. Authenti-

cation based on physical tokens (i.e., “what you have”) can be

given to a threatening attacker and is thus highly vulnerable

to coercion. Most knowledge-based forms of authentication

(i.e., “what you know” ) are explicitly memorized and can

be communicated, thus can also be given to an adversary.

One way to protect users in such systems is through panic

passwords [18], where any user has a regular password and

another, panic, password. If input, the panic password commu-

nicates a duress situation to the server. While this approach

can help, it can lead to more cognitive load for the user to

memorize both passwords and the panic password could be

forgotten in a stressful situation.

Some static biometrics (i.e., “who you are”), are vulnerable

to coercion whereby the attacker makes a copy of the user’s

biometric data for use later on (e.g., fingerprints, iris, and

facial recognition [19]). Some behavioural biometrics can

resist some coercion attacks. Babu et al. [20] propose a method

that uses users’ transaction time behaviours for authentication.

De Luca et al. [21] propose an implicit authentication method

for touch screen smart phones whereby they authenticate users

based on how they interact with the device using a sequence

of time series of touch screen data. Gupta et al. use voice

[22] and skin conductance [23] measurements to provide a

key generation mechanism with reduced accuracy while the

user is under duress. They showed these measures can reveal

the user’s emotional states and recognize if he/she is under the

attacker’s control; however, for the suggested voice solution,

some people may not be able to speak due to injuries or mental

deficiencies, and a person can lose his/her voice temporarily

due to illness such as cold, cough, etc. Skin is also affected

by several external factors such as temperature, illness, etc.

Some advantages Tacit Secrets have over these mechanisms
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is that they are system-assigned (and thus have configurable

security for higher-security environments), are more difficult

to observe in a way the user cannot detect (e.g., through social

engineering), and can be changed more easily if compromised.

III. TACIT SECRETS DESIGN

Our design of a Tacit Secrets approach uses implicit learning

(IL). IL is the acquisition of skills through the repetition of a

task; these skills are acquired unconsciously, unintentionally,

and without having declarative knowledge about what has

been learnt [24], [25], [26]. IL is associated with complex

features or probabilistic patterns, whereas explicit learning

is most probable when stimuli are salient [27]. Examples of

where IL is involved include perceptual-motor skills, language

acquisition, social intuition, and detecting a target in a complex

scene [25]. We are inspired by a method known to trigger IL

for spatial contexts, called Contextual Cueing (CC) [28], as it

has been found to be robust over time (lasting for at least six

weeks [29]). We provide a description of CC in Section III-A

and how our approach makes use of CC in Section III-B.

A. Contextual Cueing

Contextual Cueing (CC) is a mechanism [30] through which

visual attention can be guided by implicitly learnt knowledge

[31]. CC was first developed by Chun and Jiang [30] to

study implicit learning and memory. To provide insight into

the process, consider that objects and events occur in a rich

visual context, aiding their recognition. This context tends to

be predictable, because one’s visual experience is not based

on a random sample of objects; it is structured and repetitive.

For example, we may need to identify a traffic signal amongst

an array of information in a busy street. Such a search might

be facilitated by repeatedly seeing that the location of traffic

signals are most often to the right of street signs.

A context can be defined as a 2-dimensional spatial con-

figuration of irrelevant objects (aka. distractors) in which a

target is presented. In effect, CC relies on distractor positions

to provide spatial cues for the location of a target. The entire

context is shown on a display, for a fixed period of time. See

Figure 2 for an example of a display used in CC experiments.

In cognitive psychology experiments of CC, subjects are

shown a set of displays where some subset are repeated (i.e.,

shown more than once in the session). For each display, the

subject is asked to find the target, and given a time limit

of 3 seconds. Over time, for repeated displays, subjects’

performance in finding the target improves [26], [32], [28].

Chun and Jiang [28] found that the difference of reaction time

between previously unseen (novel displays) and seen (repeated
displays) was significantly different. Reaction time (RT) refers

to the time it takes a participant to find the target; see Figure 3

for this effect on our experiment (as described in Section IV).

Chun and Jiang [28] showed that participants were typically

unable to explicitly recognize learnt contexts through a post-

experimental classification task.

B. Tacit Secret Design Overview

On a high level, our design trains users to implicitly learn

a secret set of displays, which becomes their Tacit Secret. We

call user i’s secret set of displays Ki. The training/registration

of a Tacit Secret is explained in section III-C. The lo-

gin/verification process is described in Section III-D.

C. Training of Tacit Secrets

The goal of training is to ensure the user i implicitly

learns a set of displays; this is accomplished during account

registration. Let D be the full set of displays that can exist

under the system parameters. Ki (user i’s secret) is a set of

displays, drawn at random from D. Note that |Ki| << |D|.
We use Ni to refer to a sequence of novel displays for i; i.e.,

displays that are not in Ki; these are drawn at random from

the pool of possible novel displays (i.e., D \Ki). We also use

the notation Ri to refer to a sequence of repeated displays
shown to i, where each display is drawn at random from Ki.

In the training session, user i is shown Ri and Ni, which

are interleaved at random. For each display, i must search

for a single rotated ‘T’ (the target) among many ‘L’s (the

distractors; see Figure 1). Once the target is found, i must

report the target orientation as quickly as possible by pressing

the corresponding keyboard arrow key. Pressing the incorrect

key, or not pressing any key, results in an invalid response for

that display. There is a time limit of 3 seconds for each display

that if the user does not answer, the display is removed and

the new one is shown. At the end of the training session, the

user is expected to have implicitly learnt the configuration for

the displays in Ki, due to repeated exposure to these displays.

D. Verification of Tacit Secrets

To be authenticated at a later time, a user i is provided with

the same task as in training. The sequence of novel displays in

Ni are once again drawn randomly from D \Ki, so they are

unlikely to have been seen before. The sequence of displays

in Ri are drawn again randomly from Ki. By demonstrating

better performance on the displays in Ri over the displays in

Ni, the user i is demonstrating knowledge of the displays in

Ri (and thus Ki). For each display, a response is considered

incorrect if the target orientation is not correctly input within

the time limit (i.e., 3 seconds). We only consider performance

data for the responses labelled as correct. Users only have one

chance to input a target orientation for each display.

Performance Data. For performance data used in making

authentication decisions, we use RT. We note that it may be

possible in future work to incorporate further metrics, e.g.

related to eye tracking, mouse movements, or touch screen

behaviours, depending on the environment.

Verification Method. We consider login success to occur if

the Mann-Whitney (MWU) test is significant with α = 0.05.

The null hypothesis for the MWU test is that the distribution

of the performance metric, RT, for Ri is the same as for

Ni, against the alternative hypothesis that the distribution of

the performance metric for Ri is significantly different than

for Ni. This test was chosen as it is non-parametric and
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Fig. 1: Illustration of different displays with and without background image.

Fig. 2: An example display arrangement during the training session.

the performance data is not normally distributed. Also, the

performance data is ordinal.

IV. FEASIBILITY STUDY

Here we describe our study to test the feasibility of our

approach to Tacit Secrets. The experimental procedure was

approved by the Research Ethics Board at our university. The

study ran over two weeks in a laboratory environment in order

to collect eye-tracking data for future analysis. Participant

demographics are described in Section IV-A, study structure

in Section IV-B, and design considerations for our implemen-

tation and study in Section IV-C.

A. Participants

Thirty participants (18 males and 12 females, aged between

18 and 25 years) were recruited through email and posters

which were distributed across the university campus. These

participants were paid $10 each to participate in our lab study

and entered into a draw for $50. The inclusion/exclusion

criteria consisted of being with normal or corrected-to-normal

vision acuity, and not to be registered in any computer

security-related program. All of the participants were students,

where 67% of the participants had a high school degree (or

equivalent) and 33% had a university or college degree. 30%

of the participants majored in engineering and applied science,

30% science, 23% business and IT, and the other 17% majored

in health and social science. 53% of our participants had

normal and 47% had corrected-to-normal vision.

B. Study Structure

The participants were asked to attend three sessions. The

sessions were scheduled according to the participant’s conve-

nience, within the following constraints: the second session is

two days after the first training session, and the third session

happens a week after the second session. The procedures for

all three experimental sessions were the same except that the

pre-experimental questionnaire is only presented during the

first session.

Participants were instructed to sit approx. 60 cm from a 23-

inch LCD display monitor with a sample rate of 85 Hz and to

press keyboard arrow keys in response to stimuli. In the first

session, participants were asked to sign the consent form and

then were provided written and oral instructions. They were

calibrated with the eye-tracker and started using the application

after they agreed to their participation in the experiment. The

study purpose (in the consent form and invitation letter) was

left intentionally vague, so they were not informed about the

exact process of learning that the experiment was testing until

after the end of the experiment. The reason for this was

that we wished to avoid the possibility of this knowledge

affecting their performance and thus the unconscious learning

that the experiment aims to test. The experiment’s purpose was

debriefed at the end of the third session.

During pilot testing, we realized that in addition to a

mandatory break that is given between the training and testing

phase, the task should allow users to initiate optional rest-

breaks when they felt tired. Breaks were initiated by pressing

the ‘Esc’ key and the experiment resumed by pressing ‘Enter’.
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C. Study Considerations and Parameters

Here we explain the initial design considerations and pa-

rameters of our implementation and feasibility study.

Number of Displays per Session. Our primary goal was

to ensure we had sufficient data to test feasibility of the

approach. Thus, we leaned toward longer training sessions than

was likely necessary. To decide on an appropriate number of

displays per session, we referred to previous studies on CC

[33] and found they suggest that the cueing effect arises after

the fourth block of 16 displays, and there are no reliable trends

in RT before this block. The decreasing trend for the RT would

exist until block 15 and 16 [34], [35]. Thus, our training phase

consists of 240 trials (i.e., displays), divided into 15 blocks.

Each block contains 16 displays, where 12 are from Ri, and 4

are from Ni. Figure 2 shows an example of how displays are

presented in each block during the training session. In each

display, there are 48 (i.e., an invisible matrix of 6×8) possible

target locations. A look at the RT trends in our training

data indicate that implicit learning effects are relatively stable

after 7 blocks, so it is possible we could reduce the number

of displays in the training session accordingly, and thus the

training time.

For verification/login, there is a trade-off related to the

length of the sequences Ri and Ni; for accuracy, there must

be enough performance data recorded for each sequence, but

longer sequences means a longer login time. We aimed to

gather sufficient data to test the feasibility of the approach,

and simulate the feasibility of shorter sequences using the

data collected. We present the simulation results in section

VI to evaluate how optimized these sequence lengths can be

in future implementations. To ensure sufficient data, we tested

verification/login sessions containing 100 trials where for each

user i, Ri contains 50 displays drawn randomly from Ki,

and Ni contains 50 random displays drawn from D \Ki. On

the day of training, we also performed a short session where

Ri contains 20 displays drawn randomly from Ki, and Ni

contains 20 random displays drawn from D \Ki.

Display Variations. The training and login tasks contain

two variations of displays of size 1440 × 900 pixels: array-

based (standard CC; see left side of Figure 1) and scene-

based which contained a background image (see right side

of Figure 1). Scene-based displays elicit scene-based cueing,

which is related to a background scene and array-based cueing

occurs based only on the position of distractors in the context.

Brooks et al. [36] suggest that when a particular repeated

array had been consistently associated with a particular scene

background, it produces more robust contextual cueing. They

found that training with scene-array displays led to joint

learning of the two cues, such that cueing was disrupted when

either the scene or the array is changed. In our experiment, we

used natural scenes as backgrounds for half of the repeated dis-

plays. These images were randomly chosen from our database.

Participants searched for a target that was predicted by both

the background scene and the locations of distractor items. We

also adjusted the luminance of the target and distractors across

displays in order to increase search items’ contrast against the

background scene. In all displays, the target appears equally

likely in each of four quadrants of the screen to eliminate

learning of location frequencies for the repeated stimuli.

Search Strategy. To facilitate access to implicit knowledge,

thereby allowing a consistent Contextual Cueing Effect to

develop, we asked our subjects to use a passive strategy while

searching for the target. We notified them that the best strategy

for this task is to be as receptive as possible and asked them

to “let the unique item pop into your mind as you look at the

screen”. Lleras et al. [26] hypothesized that using different

search strategies: active (an active effort to find the target) vs.

passive (intuitive search, wherein they need to be as receptive

as possible, let the unique item ‘pop’ into their mind while

looking at the screen, let the display and intuition determine

the response, and tune into ‘gut feeling’), can have different

results while performing the CC task. They experimentally

showed that those subjects who used a passive strategy for

the search task had more substantial CC effects. We do not

know what strategy users really used; however, providing a

set of precise and consistent instructions helps us guide users

from arbitrarily choosing a search strategy.

Positive/Negative Feedback. To indicate that a user’s re-

sponse has been recorded by the system, after pressing a key,

a border appears around the display which is either green

(when the correct arrow is pressed) or red (when an incorrect

arrow is pressed). This decision follows Lleras et al. [37], who

investigate how contextual learning is considerably sensitive to

external rewards associated with the search interactions.

V. RESULTS

Here we report the results of our feasibility study. An

overview of performance data trends for the whole participant

sample is reported in Section V-A. Our results for authenti-

cation success rate, false positives, and speed are presented

in Section V-B. We report the results of our simulations to

determine optimal configurations separately in Section VI.

A. High-Level Overview of Performance Data Trends

To confirm the CC effect, we first analyze the search RT for

the entire sample of participants. Figure 3 indicates the overall

RT performance for the repeated displays compared to novel

ones for all our participants.

B. Using RT Performance Data

1) Authentication Success Rate: Running the MWU test

(with α = 0.05) on the recorded RT data for all participants for

sessions 1, 2, and 3 revealed that 100%, 88%, and 86% of users

had a significant difference between the RT for the displays

in Ri versus Ni (recall the verification method described in

Section III-D).

2) False Positives: Here we evaluate the false acceptance

rate (FAR), i.e., the proportion of attempts that would be

wrongly classified as legitimate. To evaluate this threat, we

used each user’s display sequence labels (i.e., ‘novel’ and

‘repeated’) to re-label each other user’s sequence and see if the
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Fig. 3: RTs for novel and repeated displays, for progressive

blocks in the training session. The CC effect is evident after

4 blocks and stabilizes after 7 blocks.

Fig. 4: RT in milliseconds, for each session, for the set of all

30 participants.

newly-re-labelled sequences passed or failed authentication. In

our implementation, different users have different sequences,

containing a different order of display types. In this scenario,

we assume attackers try to use their own performance data

to login to another user’s account. Our three authentication

sessions had a different number of displays: 40, 100, and 100

for Session 1, 2, and 3 respectively. Thus, we performed the

analysis through labelling each user’s display sequence for

Session 1 with the Session 1 display sequence of all other

users, and the display sequence of Session 2 and 3 of each

user with the display sequence of Session 2 and 3 of all other

users. As shown in Table I, through the first run of the test,

we considered all types of displays, including array-based and

scene-based. Then, we excluded scene-based displays to see

if the results changed. The exclusion was due to the possible

complexity that displays with background images might have

impacted performance of the users. As the results show, there

is a negligible improvement of 0.2% in the FAR when we

excluded background displays. We further improve the FAR

in Section VI-A.

Display Types S1-S1 S2-S2,S3 S3-S2,S3 Total Passed
All Types 70/870 137/1404 147/1566 3840 9.21%

Exclude BG 60/870 127/1404 160/1566 3840 9.03%

TABLE I: The number of cases the MWU-test passed -False

Positives (S1: Session 1, S2: Session 2, S3: Session 3).

3) Speed: The mean training time was 14.5 minutes. As

noted in Section IV-C, our data indicates that this could

likely be reduced by half or more. The login times are

explained in Table II. We show how different configurations

can substantially improve the login time in sections VI-A.

Training Session 1 Session 2 Session 3
Mean 14:49 01:08 04:46 05:53

Median 14:18 02:09 04:14 05:40
Std. Dev. 02:46 00:29 01:36 00:24

TABLE II: Completion times for each session.

VI. SIMULATING DIFFERENT CONFIGURATIONS

Our feasibility study verification/login sessions used long

sequences of novel and repeated displays, for the purpose of

ensuring we had sufficient data to analyze. However, it may

be possible that shorter display sequences are required for an

effective Tacit Secret design. To determine whether a more

optimal configuration of display sequences might exist, we

simulate different configurations of our system design (i.e.,

using different numbers of displays)

For the purpose of these simulations, we sampled data

randomly from each user’s session 2 and 3 datasets. We are

not sampling from session 1 as it is the session with the

best results and we wish to avoid biasing our results. For

sessions 2 and 3, while the measurements may be influenced

by higher learning effects from more repetitions, they may also

be influenced by stronger fading effects due to time delays. We

note that there is not a remarkable performance improvement

of the users from session 2 to 3. Since we are sampling at

random from the data collected in sessions 2 and 3, we note

that the sequences of novel and repeated displays for every

user differs in these simulations, than from the ones actually

provided during the testing sessions. In these simulations, we

also considered using fewer repeated displays, which would

reduce the risk of observation attacks.

A. Results for Different Configurations

We show our results in a Receiving Operating Charac-

teristics (ROC) graph, to demonstrate the trade-off between
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True Positive Rate (TRP or Sensitivity) and False Positive

Rate (FPR or 1-Specificity). For Figure 5, we display the

configurations that had an authentication success rate over

70%. The closer the points are to the northwest of the graph,

the better performance the configuration has. The graph shows

the configuration with 25 repeated and 25 novel displays

outperforms the other configurations with a TPR of 0.897

TPR and 0.008 FPR. Given this 25-25 configuration, we could

keep strong accuracy and have a shorter session duration.

The average login time for the 25-25 configuration would

be 2.5 minutes which is comparably shorter than the 50-50

configuration average login time (5 minutes).

Fig. 5: ROC graph showing performance given different login

configurations. Configurations are described by the number of

novel (N) and repeated (R) displays they contain.

VII. SECURITY ANALYSIS

In this section, we first provide our threat model in Section

VII-A and then analyze how our approach to Tacit Secrets

would fare against five different attack scenarios. These attacks

include: (1) offline brute-force in Section VII-B, (2) online

guessing using population statistics in Section VII-C, (3)

coercion attacks in Section VII-D, (4) observation (shoulder-

surfing) attacks in Section VII-E, and (5) phishing attacks

in Section VII-F. Our security analyses are performed for

different configurations of our approach to Tacit Secrets.

A. Threat Model

Our threat model is based on the assumption that an adver-

sary wishes to obtain the user’s Tacit Secret in order to either

decrypt previously collected data and/or gain access to a high

security system, room, or administration task. We consider

online, offline, coercion, observation, and phishing attacks.

Here we list the assumptions our analysis builds upon: (1)

The attacker has software that is capable of (i) detecting back-

ground scene change, (ii) detecting display/context objects’

orientations, and (iii) responding with a chosen true delay, (2)

the attacker is able to collect data from the population on the

task in general (i.e., for both novel and repeated displays) to

obtain response time distributions, and (3) the attacker does

not know what the display types are (novel/repeated) for the

target user.

B. Offline Brute-Force Attack

To determine the efficacy of an offline brute-force attack, we

must enumerate the size of the key space for our approach. We

can consider a random, system-assigned Tacit Secret as a set

of size 12 (i.e., |Ki| = 12). Each element in Ki could be any

display in D, with equal probability as it is system-assigned.

To enumerate the key space, we must first determine |D|. Since

each display is a 6× 8 matrix, there are 48 possible positions

on each display where objects (distractors or targets) can be

placed. Each display contains 16 objects; 15 distractors (‘L’)

and 1 target (‘T’). First, the position of the target is chosen:

48C1. Then the position of each of the 15 distractors is chosen:

47C15. Thus, |D| = 48× 47C15 = 245. Given that there are 12

displays to be chosen from D, the total number of possible

keys is: 245C12 ≈ 2510. Thus, a brute-force offline attack is

expected to succeed only after approximately 2509 guesses.

C. Online Attack Using Population Statistics

For an online attack to succeed, the attacker must cor-

rectly guess the type of all displays presented in a login

session (i.e., if they are novel or repeated). If, as assumed

in Section VII-A, the attacker knows the time distribution

of novel/repeated displays, he/she can submit a legitimate

guess for each display, and the attack success is determined

by correctly guessing the type of each display. To calculate

the probability of correctly guessing all the display types in

a session for user i, consider that there are |Ri| positions

from the sequence of |Ri| + |Ni| displays that could contain

the repeated displays. Then there are (|Ri|+|Ni|)C|Ri| possible

positions for the repeated displays. If the attacker has one

attempt at guessing this particular sequence, since it changes

on each login attempt, the probability of a successful guess of

the entire display sequence is 1/((|Ri|+|Ni|)C|Ri|).
(50-50 Configuration). Here |Ri| = 50, |Ni| = 50, and

|Ri|+ |Ni| = 100. Thus, the probability of a successful online

guess is 2−96.

(25-25 Configuration). We evaluate this configuration as

we found it to outperform other configurations (recall Section

VI-A). Here |Ri| = 25, |Ni| = 25, and |Ri| + |Ni| = 50.

Thus, the probability of a successful online guess is 2−47.

While this indicates this configuration is not as resistant to

attacks as the 50-50 configuration, it is still sufficient to be

considered resistant to online attacks.

D. Coercion Attack

Imagine a scenario whereby a motivated attacker threatens a

legitimate user with a weapon or using blackmail. The attacker

can ask the victim to hand over his/her key, or tailgate the

user, e.g., through a physical access control point or forcing

the user to login while he/she is present in order to take over
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the account after authentication is complete. Below we further

explain these attack scenarios.

1) Communicating the Secret: This describes when a victim

is forced to hand over his/her secret key so the attacker can

masquerade as the user at a later time. Since our approach

to Tacit Secrets is based on implicit knowledge, even if the

trainee is coerced and willing to reveal the key, she/he is not

able to do so as she does not have explicit and conscious

knowledge of the key. The implicit nature of the acquired

knowledge allows protection against such coercion attacks.

2) Tailgating: This describes when an attacker tailgates the

user to the authentication station, coerces the user to login

to the system, and then follows them past the authentication

point. In this scenario, we have no evidence that our approach

will protect the user’s account, as the user may have no choice

but to login out of fear for their life. To protect against such

an attack scenario, we suggest using a type of panic password

[18]. E.g., this could be a simple recognition test from a set of

items, whereby the user is trained on a decoy (e.g., an image)

to select from the set presented, in the event of this type of

coercion. If no coercion is taking place, another item can be

selected instead. If the user selects the decoy, the system can

detect suspicious activity by a masquerader. It raises an alert

to the system of a potential attack in which case the system

will not expose the user’s real key. For such a system to work,

it is important that the user understands there is no way for

the attacker to determine the decoy was selected; thus, it is

important for the system to behave as though the user had

logged in normally (yet with limited access to sensitive data

and functionality). We note that it is also conceivable that

our approach might provide some protection against coercion

even in this scenario. Although it is not yet tested, it is

possible that a user might fail to do the task properly as

their subconscious system might be affected under duress (e.g.,

being stressed) [38]. Gauging the stress level of users and how

duress influences the measurements of our approach is out of

the scope of our feasibility study and is left as future work.

E. Observation Attack

Another type of attack can occur through an attacker’s

observations. Assuming that the training session is performed

in a secure location, the attacker attempts to pass the login

test using obtained knowledge through observations of single

or multiple testing sessions. Given that he does not have any

prior knowledge, he tries to recover the user’s dataset through

observation. So to have a probabilistic view of this threat, the

following scenario should be considered. Each user has a learnt

dataset Ki containing 12 displays. Through an authentication

session, a sequence of repeated displays Ri will be randomly

drawn from the Ki set. If a display is shown at least twice,

an observer can understand that it is a part of the user’s learnt

dataset. To find how successful an attacker might be, we need

to know how many sessions are required for the attacker to

acquire the knowledge of all the learnt displays Ki for a user

i. To calculate this number we refer to the “double dixie cup

problem” [39], which is a well-known type of the “coupon

collector’s problem”. Given that there are n different types of

coupons, the coupon collector problem finds the waiting time

for a coupon collector to collect all n coupons. Each coupon

is equally likely and would be randomly selected at each trial.

The double dixie cup problem is an extension to the coupon

collector problem and it determines the expected number of

dixie cups which must be purchased in order to complete m
sets of n existing different dixie cups in time t. Using the

following formula we can calculate this number:

Em(n) = n ·
∫ ∞

0

[
1− (1− e−t

m−1∑
k=0

tk

k!
)n

]
dt.

Given n = 12 and m = 2, the expected number of displays

required to be exposed in order to show the entire set of user’s

learnt displays would be 58.04. We discuss the implications

for each configuration below.

(50-50 Configuration). With a testing session containing 50

repeated displays in Ri (the length of Ri is 50), the attacker

is expected to need to observe 2 login sessions in order to see

all learnt displays at least twice.

(25-25 Configuration). Given that each login session con-

tains 25 repeated displays in Ri, the attacker is expected to

need to observe 3 login sessions in order to be able to acquire

the knowledge of the user’s key.

Discussion. There are different amendments to the exper-

iment configuration we can apply in order to decrease the

chances of success of the observation attack while keeping

the same accuracy. By exposing fewer repeated displays Ri,

we increase the number of sessions the attacker needs to

observe (e.g., for 25-25 configuration, it is 3 login sessions).

We can also increase the length of each user’s learnt key. By

increasing this number, we have more displays to select from

and thus the attacker needs to learn more displays in order

to know the user’s whole set. This would result in the user

needing to learn more displays; however, since the CC effect

can be observed after the fourth block in training, we may be

able to decrease the number of repetitions during the training

session from 15. Another possibility is to provide the user

some new displays to be learnt during each login session. Once

user i learns the display configuration through a few testing

sessions, the display can be added to Ki (i.e., their key). Such

a mechanism may allow us to update the user’s key and prevent

attackers from acquiring sufficient knowledge during a series

of observations. Finally, we note that if our approach to Tacit

Secrets is infrequently used (e.g., for password resets), then

it may take a very long time for an attacker to observe the

required number of sessions.

F. Phishing Attack

For the purpose of this discussion, we assume that a future

version of our Tacit Secrets approach may be useful for a web

environment (e.g., for fallback authentication). For an attacker

to launch a phishing attack, he/she must create a phishing

site that mimics the Tacit Secret login process. In order to

gain information about whether a given challenge display d
is in user i’s Ki, the phishing site would need to provide d

144



as a challenge to user i, record i’s performance data for d,

and compare it to i’s performance data for other displays to

determine whether it has better performance. If d has better

performance than the majority of displays in the session, the

attacker can assume d ∈ Ki. Since there are 245 possible

displays to challenge the user with, and each login session

should only contain 50 displays, we expect it would take

over 10 billion phishing attempts on the same target user i
to successfully recover i’s Tacit Secret.

G. Security Discussion

Overall, the results of our security analysis suggest that our

approach to Tacit Secrets has strong potential to offer security

from various attacks: offline and online guessing, certain types

of coercion, observation attacks given a small number of

observations, and phishing. Our results also highlight how

varying the system configuration can result in even stronger

security from observation attacks, e.g., by increasing the

number of learnt displays and also decreasing how often they

are revealed. Of most interest is our 25-25 configuration, which

offers the best accuracy, is expected to require 3 observations

for an advanced observation attack to succeed, has sufficient

security to protect against online guessing attacks, and pro-

vides excellent security against offline and phishing attacks.

Due to the inherent features of our approach, the Tacit Secret

is protected against coercion attacks involving communication

of the secret. However, if the attacker forces the user to login

to the system while she is present, the user may feel they need

to login to the system as usual. For such systems where this

threat is of concern, we suggest employing panic passwords

as discussed in Section VII-D2. Finally, since our approach is

based on fine grained performance metrics, it has the potential

to naturally deteriorate under user duress conditions; however,

evaluating whether this is the case is left to future work.

VIII. LIMITATIONS

As our feasibility study was performed in a laboratory

environment, our results may not describe how well the

approach would work in a non-laboratory setting, especially

since the training task requires participant focus. Also, our

study participants are university students who may have im-

proved focus than the broader population. Further research

is needed to study this approach to Tacit Secrets in other

populations and in other settings.

IX. DISCUSSION

Feasibility of Tacit Secrets. We found our approach has

much better performance than a previously proposed scheme

for Tacit Secrets, SISL. The authentication process in SISL

is based on the users’ performance (the percentage of the

correct responses and response time) on a learnt sequence

versus random ones. This data can be used to prevent the

same coercion attacks as our approach; however, only 71%,

47%, and 62% of participants could successfully authenticate

using this method immediately, 1 week, and 2 weeks later

respectively. SISL’s first experiment aimed to confirm the

existence of implicit learning through an authentication session

immediately after training; Their second experiment had two

groups of participants: the first group did the SISL task one

week after training. The second group did the SISL task two

weeks after training, where the length of the login session

was doubled (from 5-6 minutes to 10-12 minutes) to see if

this change could affect their performance. For this second

group of participants, 62% exhibited better performance on

the trained sequences. The improvement in the authentication

success rate (from 47% to 62%) was due to doubled length of

the testing session for the 2-week delay group (from approx.

5-6 minutes to approx. 10-12 minutes).

Our results showed that our approach offers substantial

improvements, increasing success rates from 71% to 100%

and 47% to 90%, immediately and one week later respectively,

reducing training times from 30-45 to 14.5 minutes (and could

be further reduced, according to Figure 3), and reducing the

login times from 6-12 minutes to approximately 2.5 minutes.

Interference Between Multiple Systems. There is a very

low probability for interference between the Tacit Secrets

assigned and novel displays of different systems using the

same approach. This scenario would occur when the novel

displays (randomly generated by system A), happen to be part

of the user’s key for another system (e.g., system B). Consider

that the possible number of displays in our configurations

is 245, and each system has 12 learnt displays (randomly

assigned). For the purpose of our discussion, we assume a

user has Tacit Secrets for 100 systems. Then the probability

that in a login session for user i on system A, a given novel

display belongs to Ki on any of the other 99 systems, is

p = 12∗(99)
245 . To compute the probability of interference in

any display in a given login session, we first compute the

probability of no interference using the binomial distribution’s

probability mass function with number of successes k = |Ni|,
number of trials n = |Ni|, and the probability of success

(i.e., of no interference in a given trial) being 1− p. Then the

probability of interference is one minus the probability of no

interference. Then the probability of interference under these

assumptions is as follows for the configurations we consider:

25R-25N = 8.44× 10−10, and 50R-50N = 1.69× 10−09.

X. FUTURE WORK

We conclude the paper by discussing directions for future

research. The design of our feasibility study is based upon re-

lated work on the contextual cueing paradigm. To be consistent

with those studies, for the training session, we considered 15

blocks containing 16 trials. However, we found the learning

effect is detectable after the fourth block, and appears to

stabilize after the seventh block. This implies that we may

be able to substantially reduce the training session time. In

future work, it would be worth investigating how much the

training session can be shortened while the learning is still

effective and durable.

Since the knowledge acquired through CC has been found

to last for delays of at least six weeks [40], [29], it would be
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interesting to determine whether it exists for longer duration

to evaluate its suitability for fallback authentication.

We are also interested in exploring other enhancements

that may improve accuracy and login times, such as using

eye tracking performance metrics and eye movements as a

behavioral biometric.

Our work suggests that directly using implicitly learnt

secrets in authentication may be a viable approach for some

contexts. Future work also includes exploring whether implic-

itly learnt information could be used indirectly to facilitate

memorization of traditional authentication secrets.
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