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In this article, we present a thorough evaluation of semantic password grammars. We report multifactorial ex-
periments that test the impact of sample size, probability smoothing, and linguistic information on password
cracking. The semantic grammars are compared with state-of-the-art probabilistic context-free grammar
(PCFG) and neural network models, and tested in cross-validation and A vs. B scenarios. We present results
that reveal the contributions of part-of-speech (syntactic) and semantic patterns, and suggest that the former
are more consequential to the security of passwords. Our results show that in many cases PCFGs are still
competitive models compared to their latest neural network counterparts. In addition, we show that there is
little performance gain in training PCFGs with more than 1 million passwords. We present qualitative analy-
ses of four password leaks (Mate1, 000webhost, Comcast, and RockYou) based on trained semantic grammars,
and derive graphical models that capture high-level dependencies between token classes. Finally, we confirm
the similarity inferences from our qualitative analysis by examining the effectiveness of grammars trained
and tested on all pairs of leaks.
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1 INTRODUCTION

Password models are data-driven structures that capture regularities in password samples and
are useful to the analysis of password creation patterns, which often can be exploited in password
guessing attacks. The Semantic PCFG [21] is a probabilistic context-free grammar (PCFG) that
captures syntactic and semantic information. It assumes that, in addition to random sequences,
people choose meaningful word combinations that form regular patterns when analyzed at scale.
These patterns would resemble those found in natural language, but would not strictly obey
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natural language grammar rules. An exemplary instance of a semantic pattern is the dependency
between adjectives and animal words, as in cutedog. When trained on primarily English datasets,
the Semantic PCFG was shown to outperform the PCFG of Weir et al. [23] in guessing sessions
where the targets were the LinkedIn, MySpace, RockYou, and Gamigo lists [11, 21].

The Semantic PCFG is a member of the family of linguistic password models, which relies on
linguistic resources and processes, such as parsing, segmentation, and classification. Linguistic
models remain valuable because they offer an interpretable description of a password list’s com-
position, allowing researchers to study in detail differences between user populations and the im-
pact of password policies. However, important questions regarding the behavior of such linguistic
modeling remain unanswered. The individual contributions of different levels of information (e.g,
syntactical, semantic) to generalization and, consequently, guessing performance, is unknown.
The ability to learn patterns from small samples is not well understood, neither is the effective-
ness of parameters that control overfitting, such as semantic specificity—a free parameter of se-
mantic grammar training—and probability smoothing method, which is common to all linguistic
approaches.

Furthermore, after the introduction of the semantic model the estimation of guessing success in
very long sessions was made possible by the Monte Carlo strength evaluation [7]. This rendered
the original evaluation of the semantic model obsolete, as it is limited to cracking attempts of up to
3 billion guesses. Newer models commonly use Monte Carlo evaluation, making comparison with
older models difficult. In particular, the neural password model by Melicher et al. [16] attained
excellent performance, surpassing other high scoring automated cracking approaches, including
an improved version of the PCFG of Weir et al. In addition to a newer evaluation method, the com-
munity has also adopted more recent password leaks to test against, such as the 000webhost list.

In this article, we offer a nuanced study on learning linguistic patterns in passwords and an up-
date of the performance of the Semantic PCFG using the most recent evaluation methods to pro-
vide results for longer guessing sessions [7]. We do so through large parameter sweep experiments
that we deployed on a high-performance computing infrastructure. In the following sections, we
report the results of experiments that compared the performance of PCFGs (a) trained with and
without semantic symbols (WordNet senses and proper names); (b) trained with various levels of
semantic generalization; (c) trained with password lists of various sizes; and (d) trained with maxi-
mum likelihood estimate, a method that assigns zero probability to unseen strings, and probability
smoothing, which allocates probability mass to unseen strings [6]. Importantly, we compare three
generations of PCFGs (Weir et al. [23], Veras et al. [21], and Komanduri [12]) with one of the latest
neural network models (Melicher et al. [16]). Our experimental setups involve grammars trained
with the RockYou list and tested on the passwords leaked from LinkedIn and 000webhost, plus in-
dependent cross-validation setups with the same data. Furthermore, we use linguistic grammars to
investigate patterns qualitatively in three recent password leaks: 000webhost, Comcast, and Mate1.
We present high-level graphical models of these leaks, discuss similarities in grammar rules, and
conduct a cross-leak cracking experiment.

In summary, this article contributes a study of the effect of multiple parameters on the guessing
performance of PCFGs and a neural network model, and a grammar-based qualitative analysis of
recent password leaks.

2 LATEST ADVANCES IN PASSWORD MODELING

Since the first application of probabilistic grammars in password modeling, the field of password
authentication has seen the introduction of ever more sophisticated natural language process-
ing (NLP) into password models. Research in the last decade has mostly explored the space
of statistical NLP, which includes corpus-based techniques for parsing and classification. Now,
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following a larger trend in computer science, neural network models are starting to appear, and
results suggest that they may be superior in some aspects. In this section, we review the evolution
of PCFGs and briefly discuss the latest developments outside the grammar-based paradigm.

2.1 PCFGs

Weir at al. [23] introduced the first PCFG password model. Prior to that, the academic literature
considered password cracking as based on either brute-force or “dictionaries.” Their PCFG relied
on rudimentary NLP. Passwords were split into tokens of only three classes: alphabetic, numeric,
and symbols. Combined with token length information, these classes formed the base structures
of the grammar; for instance, the structure LgN;S;, which represents eight letters followed by one
number and one symbol, is learned from the password password1!. Notably, their text process-
ing pipeline did not have the ability to break alphabetic strings into words (word segmentation);
furthermore, alphabetic strings have uniform probability.

Houshmand et al. [10] improved over Weir et al.’s PCFG by enriching grammars with multi-
word patterns, which require word segmentation, and keyboard patterns, such as gwerty. Each
modification introduced by Houshmand et al. independently accounted for an increase in cracking
performance over the Weir PCFG. Together, they accounted for increases in the range of 15% and
22% throughout a cracking session of 102 guesses. On top of these improvements, a 33% increase
in performance was achieved by selecting a word dictionary with better coverage (a dictionary
based on RockYou words instead of the classic dic0294). Training and test sets were partitions of a
dataset combining RockYou, Yahoo, and Hotmail passwords. Smoothing with Laplace estimation,
which allows generation of guesses that feature unseen tokens, was responsible for modest gains.

Major improvements were also reported by Komanduri [12]. In addition to having word seg-
mentation, Komanduri embedded letter case information in grammar symbols, and created sym-
bols that encompass more than one class (e.g., number plus special characters). His grammar can
also learn whole passwords as single tokens (untokenized), which improves performance in early
guessing, as the grammar is able to effectively “memorize” high-probability passwords. As with
Houshmand et al., the training aspect was improved with probability smoothing, using the Good-
Turing estimator. In Komanduri’s experiments, word segmentation accounted for a 66% increase
in passwords guessed, while untokenized structures accounted for a 12% increase. However, ex-
tensive evaluations have not yet been performed on this model.

The works above added information to the original Weir model, but the model still lacked nat-
ural language information that is common in NLP applications, such as part-of-speech symbols.
This may reflect an assumption that passwords are too simple and too short to exhibit the kinds
of language patterns we see in natural language. Evidence to the contrary was published by Ur
et al. [20], who counted parts-of-speech in common password leaks and found dependencies be-
tween classes; moreover, the distribution of parts-of-speech was clearly distinct from that of natu-
ral language, suggesting passwords have a unique syntax. This knowledge inspired the inclusion of
part-of-speech and semantic symbols by Veras et al. [21], who achieved a success rate 67% higher
than the Weir model in a test with early LinkedIn passwords (2012), and 32% higher with MySpace
passwords. We review the model of Veras et al. in detail in Section 3.

Until recently, it was not clear how well a model-based guessing attack could compete with a
professional attack. Ur et al. [20] presented a comprehensive comparison between automated and
manual attacks. They found that probabilistic methods have steep success curves in the begin-
ning of a session and flatten out as less probable guesses are made; while professionals, who often
change the course of a cracking session upon feedback (by applying custom mangling rules), pro-
duce the opposite pattern and ultimately achieve higher success. This suggests that model-based
cracking may be more suited to attacking slow hashes (e.g., berypt and scrypt).
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Table 1. Linguistic Information in PCFG Models

Model Character classes Words Part-of-speech  Semantics
Weir et al. [23] X

Komanduri [12] X X

Houshmand et al. [10] X X

Veras et al. [21] X X X X

We can organize the various grammar-based approaches to password modeling in a linguistic
information spectrum. The grammars vary with regard to the number of partitions the observed
passwords are broken into (Table 1). This can also be viewed as grammar complexity. On the most
general end, Weir et al.’s grammar encodes character class information [23]. Komanduri [12] and
Houshmand et al. [10] introduce word segmentation, and Veras et al. [21] adds another layer of
detail by splitting strings based on their syntactical and semantic categories.

2.2 Other Techniques

More recently, neural models were introduced as a promising class. In tests with collections of
crowdsourced passwords of varying complexity, Melicher et al. [16] found that a neural model
(an LSTM) performed better than PCFG and Markov models after approximately 10!° guesses,
especially against complex passwords that have three or four character classes, and long passwords
(>16 characters). These neural models were trained with a compilation of RockYou and Yahoo
passwords. The gap in performance between neural and the other methods was narrow when the
test set was a sample of 30,000 passwords extracted from the 000webhost list. A neural model of the
Generative Adversarial Network type trained with a sample of approximately 24 million RockYou
passwords needed around one order of magnitude more guesses to achieve the same success of
Melicher et al. in a limited universe of passwords with maximum 10 characters [9].

Zheng et al. [24] proposed a graph model with passwords represented as vertices and edges
linking them when password similarity is higher than a threshold, where similarity can be de-
fined in terms of string distance or probability. They found that some password lists yield graphs
with higher density and connectivity than others, and observed a positive correlation between the
vertex degree of a password and its frequency.

Dell’Amico and Filippone contributed a statistical estimate for the guess number of a password
given a probabilistic model, such as a PCFG [7]. By calculating the guess numbers of all passwords
in a test set, we can estimate the success curve of a cracking attack, saving us from having to
enumerate all guesses. This method requires a clear text test set. First, a large random password
sample is generated using the model’s probabilities. Second, the conditional probabilities of all
test passwords given the model are calculated. Finally, for every password in the test set the guess
number is calculated as a weighted sum of the probabilities of all sampled passwords that are more
probable than the test password. By pre-computing the weighted sum and storing the values in a
sorted list, the estimation can be done in time O(log n).

3 THE SEMANTIC PCFG

Grammars are hierarchical models that describe the rules of production of a language. These rules
specify how terminal symbols (the language vocabulary) are derived from non-terminal (abstract)
symbols, such that one can produce a valid string by following a chain of derivations. In a context-
free grammar the context in which a symbol appears does not affect its possible derivations, while
in a PCFG the rules have assigned probabilities [15]. The semantic model is a PCFG where the
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(pink, adjective)
(suit, noun) . (pink, adjective, NULL)
pinksuit123 Word . (p1nk suit,123) POS (123, number) SemaP"C (suit, noun, suit.n.01)
PG Segmentation Tagging Tagging —» (123, number, NULL)

(pink, adjective, NULL)
(suit, noun, clothing.n.01)

adjective, :
runvers m A(123, i
number3 e — - Generalization

Fig. 1. Text processing pipeline for grammar training. Semantic tags are from WordNet. When words have
multiple WordNet senses, the most frequent is selected. The semantic generalization process helps prevent
overfitting by grouping related senses that have homogeneous frequency in the training data.

non-terminal symbols encode high-level linguistic information: part-of-speech (POS) and word
sense. In our instantiation of the Semantic PCFG, described further below, this information comes
from CLAWS?7 tags [8] and the WordNet [17] hyponymy hierarchy of senses. These symbols allow
the grammar to capture regularities in the syntax and meaning of passwords.

3.1 Text Processing Pipeline

The training data undergoes a text processing pipeline that breaks each password into tokens (i.e.,
terminal symbols) and assigns linguistic attributes to them, resulting in tuples of the form (token,
POS, sense). Training the grammar consists in mapping these tuples to non-terminal symbols and
building a probability distribution of symbols. A non-terminal symbol is an abstract label that
groups similar tokens; for instance, all pronouns can be grouped under the symbol PP, or all words
related to sports can be grouped under Sports. In the Semantic PCFG, non-terminal symbols are
assigned following a backoff strategy [15]: if a word sense is not known, then it attempts to describe
the string with a POS symbol; if that fails, it falls back to a simpler descriptor, such as N4 for a
sequence of four digits. Thus, short random strings appended to semantically meaningful content
are handled as non-terminals representing sequences of characters, digits, and symbols.

An overview of the text processing pipeline is shown in Figure 1. Word segmentation is based on
Norvig’s statistical algorithm [18], which selects the segmentation with highest joint probability,
where the probability of each token is computed with a bigram model (from Google Web Trillion
Word Corpus). POS tagging is done with a backoff tagger that is composed of general statistical
models (trigram, bigram, and unigram) trained on the Brown Corpus and WordNet, and other
niche named-entity corpora that are known to be relevant in passwords (cities, given names, and
surnames).

Note that misspellings (e.g., passwrd) and substitutions (e.g., passwOrd) are not classified by the
POS and Semantic grammars. Modules to classify misspelled words into semantic classes, for ex-
ample, using Levenshtein distance, or to reverse substitutions, could be added in the future to
improve both the POS and Semantic models.

3.2 Semantics

The word senses are taken from the WordNet corpus [17], a linguistic tree structure where concepts
are linked by edges that represent IS-A relationships, as in dog IS-A animal IS-A mammal IS-A
living thing. Each alphabetic string that is tagged as noun or verb by the POS tagger receives a
semantic tag in the form of a WordNet sense key. Words may have many senses, so we select the
sense with the highest WordNet frequency.

In order for word senses to have any generalization power, a mapping needs to be established
so that low-level word senses are grouped into broader classes. This can be done by choosing a
tree cut consisting of a set of abstract classes (internal tree nodes), each of which represents all
of its descendants. As such, if the class “sport” is a tree cut member, any occurrence of “baseball”
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Table 2. Semantic Categories (by Their WordNet Synset Key) Assigned to Words
by Models with Different Specificity Levels

Specificity
Word Frequency 5,000 1,000 100
love 94,190 love.n.01 love.n.01 attribute.n.02
girl 50,478 girl.n.01 adult.n.01 physical_entity.n.01
dog 17,282 dog.n.01 dog.n.01 physical_entity.n.01
freedom 2,204 freedom.n.01 freedom.n.01 attribute.n.02
pumpkin 1,411 pumpkin.n.01 plant.n.02 physical_entity.n.01
tsunami 146 movement.n.03  happening.n.01  psychological feature.n.01
market 120 market.n.01 market.n.01 psychological_feature.n.01
suit 107 commodity.n.01 artifact.n.01 physical_entity.n.01
career 39 career.n.01 occupation.n.01  psychological_feature.n.01
nostalgia 23 nostalgia.n.01 desire.n.01 attribute.n.02

The models were trained with a sample (N=10M) of the RockYou password list. Specificity is a parameter of
semantic generalization, a procedure that increases the abstraction of semantic categories to prevent overfitting.

and “basketball” will be labeled as “sport” in the trained grammar. This mapping has the effect
of broadening the scope of inference of the grammar, because the probability of unseen words is
indirectly boosted via abstract classes.

Learning the tree cut is treated as a separate learning problem, which precedes grammar train-
ing. The task is defined as a model selection problem where tree cuts are scored with the Minimum
Description Length (MDL) information criterion [13, 19]. MDL selects the cut that has the best
balance between complexity (number of classes) and fitness to data. In practice, WordNet subtrees
that contain word senses of similar frequency in the data tend to be mapped into more abstract
senses than those that contain outliers. For instance, we have observed that tree cuts learned from
password lists tend to feature more often the sense “plant” than the sense “animal,” suggesting
that the frequency distribution under animal is more skewed.

The specificity of the tree cut can be tuned with a free parameter. In Table 2, we show the effect
of specificity on the semantic tags assigned to words of various frequencies. Note how words with
high frequency are more likely to be mapped to specific categories, often implying no abstraction
at all (e.g., love — love.n.01).

3.3 Terminal Smoothing

In Weir et al.’s PCFG and in the Semantic PCFG the terminal probabilities are estimated by max-
imum likelihood (ML). In ML, the parameters of the model are chosen so as to maximize the
probability of the data given the model; as a result, no probability mass is allocated to unseen
strings. Theoretically, this would impact learning from small samples, as ML is known to be prone
to overfitting. Since ML does not account for unseen vocabulary, the generalization carried out by
the MDL tree cut may have had little impact on the semantic model’s cracking performance [21].
In other words, the effectiveness of the semantic generalization depends on terminal probability
smoothing.

Terminal smoothing requires two decisions: which vocabulary is to be added to the grammar
and how to allocate probabilities to it. Since we use Wordnet for semantic classification, we opted
to use its lemmas as our vocabulary (a lemma is an uninflected word, also known as a stem).
Luckily, Wordnet covers a large set of words. We call this the prior vocabulary, composed of ev-
ery Wordnet lemma inflected in all ways: nouns appear as singular and plural, and verbs appear
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under all conjugations. Depending on available resources, it would be possible to enrich this prior
vocabulary with additional wordlists assigned to semantic categories (similar to how we handle
names. The posterior vocabulary includes every terminal observed in the data, in addition to the
prior terminals. The probability of a terminal string given a non-terminal symbol is

N X +a

" N+ad W
where x; is the observed frequency; N is the sum of the observed frequencies under the non-
terminal symbol; &, known as pseudocount, can be interpreted as the number of times strings are
assumed to be observed a priori (when a = 0, it defaults to the ML); and d is the vocabulary size
given the non-terminal. This estimator (6;) is known as additive smoothing or Laplace smooth-
ing, and it is equivalent to the Bayesian estimator when a uniform prior is assumed [15]. Additive
smoothing can be inaccurate when the vocabulary is very large, as with trigrams, in which case
more sophisticated estimators are more appropriate, like the Good-Turing estimator used by Ko-
manduri to train PCFGs [12]. With the size of our vocabulary in the order of hundreds of thousands,
the Laplace estimator is adequate and has a simpler implementation.

4 MULTIFACTORIAL TESTS

The improvements in probabilistic password modeling appeared gradually and were not always
tested in ways that allow understanding the individual effects of changes; as a result, the knowl-
edge of how parameters affect performance and the interactions between such parameters is frag-
mented. In addition, training and test sets vary, as do measurement methods. Our goal is to examine
the effect of various parameters on guessing performance in a full factorial experiment design. In
this section, we test the effects of training sample size and probability estimators, which are ap-
plicable to all PCFGs, and the effect of linguistic detail and semantic level, which are specific to
linguistic PCFGs. For perspective, we compare these results with the recent neural network model
of Melicher et al. [16].

4.1 Method

For the tests in the following sections, we use as training set the RockYou password list, which
contains 32,583,097 passwords and was stolen in 2009 from RockYou.com, a gaming website. It has
been used extensively in password research [9, 11, 16, 21, 23]. We measure success with the Monte
Carlo strength estimator; that is, we calculate the probability of passwords in the test set given
each grammar, and then estimate guess numbers. The guess number is the number of guesses we
would need to try before a password is guessed if we were enumerating all guesses of the grammar
in highest probability order. Ordered guess enumeration is not the only way a PCFG can be used in
an attack; alternatively, we could sample guesses randomly, but enumeration gives us the best shot
at guessing more popular passwords early. Monte Carlo estimation allows us to measure success
in sessions of infinite length without having to resort to extensive guess enumeration, which is
computationally expensive.

We compare PCFGs whose most detailed symbols refer to Part-of-Speech tags (POS) with PCFGs
that, beyond POS, include WordNet symbols (Semantic). These grammars are produced by exiting
the text processing pipeline of Figure 1 at different stages. We have made the code for training and
testing such grammars open source.!

As baselines, we include the PCFG models of Weir et al. [23] and Komanduri [12], and the neu-
ral network model of Melicher et al. [16]. For Weir’s PCFG we use the implementation written by

Ihttps://github.com/vialab/semantic-guesser.
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Table 3. Factors for Grammar
Training in Experiment |

Factor Levels
1,000

10,000

Sample size 100,000
1,000,000

10,000,000

32,583,973

100

Semantic 1,000
(Specificity) 5,000
10,000

Estimator Smoothed
MLE

Part-of-Speech

Semantics

Models Weir et al.
Komanduri

Neural network

Dell’Amico and Filippone [7].? For Komanduri’s and Melicher’s models, we use the implementa-
tions found in the authors’ own public repositories.>* In Komanduri’s model configuration, we en-
abled most features that are described in his thesis, namely, linguistic tokenization based on Google
Web Corpus, the ability to produce unseen strings via brute-force, mixed-class non-terminals, up-
percase nonterminals, and hybrid structures.

In Table 3, we list the factors manipulated in model training. We produced 10 random samples
for each of the five sample size levels that are smaller than the size of the RockYou list (32,583,97),
for a total of 51 training samples. Repeated sampling is important when measuring performance
with small sample sizes, where variance may be high. The PCFG models, which are very scalable,
were trained with all 51 samples, while the neural network model was trained with a single sample
from each sample size. This is due to the time needed not only to train the neural network, but
also to test it. We needed 140 hours to train one neural model with the full RockYou list in our
setup with four GeForce GTX 1080 Ti, and 15 hours to test it against the LinkedIn list.

The configuration files used to train the neural models are provided as supplemental material.
As in the original paper, we set the number of context characters to 10, and used a total of five
layers: three LSTM layers (size 1,024) and two densely connected layers (size 512). We trained each
model for 20 generations.

The specificity parameter controls the level of semantic generalization—larger values yield
larger, more detailed grammars. Specificity applies only to grammars trained with semantic infor-
mation. In total, we trained 612 grammars, of which 408 have semantic information (51 training
samples X 4 specificity levels X 2 probability estimators), 102 have POS information (51 training

Zhttps://github.com/matteodellamico/montecarlopwd.
Shttps://github.com/cupslab/guess-calculator-framework.
*https://github.com/cupslab/neural_network_cracking.
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Fig. 2. Model performance in guessing tests, split by size of the training sample (columns) and probability
estimator (rows). Weir uses MLE and Komanduri uses Good-Turing probability estimators, so they are only
included in the corresponding row. The estimator factor is not applicable to the Melicher method (neural
network), but we include it in both rows for comparison with the PCFGs. The models were trained on various
randomly sampled subsets of the RockYou data and tested on the full LinkedIn data. For each data size, we
produced 10 random samples.

samples X 2 probability estimators), and another 102 correspond to the PCFG baselines (51 training
samples X 2 baselines). In addition, we trained six neural networks.

Due to legacy implementation constraints, the grammars based on Veras et al. [21] (POS and
Semantic) can only output lowercase guesses. While this is a serious limitation for practical use,
we expect it to not affect too much our analysis, since we are mainly interested in the relationship
between guessing performance and training and testing parameters, instead of absolute cracking
numbers. Nevertheless, we apply three “mangling rules” to each guess in order to produce capi-
talized, uppercase, and camel case variations (when applicable), in addition to lowercase. A match
is counted only when a test password matches one of these four forms. Therefore, we adjust the
guess numbers with a multiplication by 4. Note that this constant factor results in an underestima-
tion of the performance of the POS and Semantic PCFGs, since not all guesses yield four variations;
for instance, pure numeric patterns yield only one guess each.

4.2 Linkedln

In this section, we test the models with the LinkedIn passwords, which were stolen in 2012, but
discovered only in 2016. The original list has 164 million e-mail addresses and passwords, which
were stored as unsalted SHA1 hashes. We obtained a copy of the cracked passwords from [1].
This copy has 60,593,032 unique clear text passwords, which constitute 98% of the unique hashes.
Accordingly, the actual proportions of the full 164 million accounts cracked are much higher for
each guesser tested, given that some passwords are typically much more popular than others. For
example, the password 123456 was used by 1,135,936 accounts [3]. Although the password policy
used by LinkedIn is only that passwords must be at least six characters in length, many of the
passwords contained uppercase characters, numbers, symbols, and were longer in length [3].

4.2.1 Results. The semantic specificity parameter introduced much variation in the perfor-
mance of the semantic grammars trained with small samples; however, the grammars quickly
converged as the training size increased (Figure 2). This convergence is seen also between POS
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Fig. 4. Model coverage of the LinkedIn dataset. Coverage is the number of passwords that can be guessed
regardless of how many attempts are needed. Left: Maximum hits by model. Right: Average hits for Semantic
PCFGs by semantic specificity.

and semantic grammars; when trained with the full RockYou list (over 32 million passwords), we
saw no significant differences between semantics and part-of-speech.

With smaller training samples, we observed mixed results that depend on the probability estima-
tion approach. With MLE, the semantic grammars were generally worse than the POS grammars.
But with probability smoothing, the inverse is true: POS grammars were outperformed by seman-
tic grammars, but not all semantic grammars. All of these differences are only noticeable with
sample sizes below 1,000,000.

Grammars trained with probability smoothing performed generally better with small training
sizes—trained with only 1,000 passwords, the best non-smoothed semantic grammar can guess
only 466,203 passwords, while the best smoothed equivalent outperforms it by a factor of 13
(6,161,283 passwords). When the training sample is larger, the number of unseen strings drops
and smoothing stops making a difference. Likewise, the semantic specificity parameter is only rel-
evant with small samples (Figure 4). This is likely due to the stability achieved by the Minimum
Description Length framework with large samples: grammars trained with different specificity
values tend to yield the same tree cut. Not surprisingly, under MLE estimation the effect of speci-
ficity is largely cancelled because there are few unseen words to benefit from the generalizations
afforded by varying the specificity.

The size of the training sample strongly influences guessing performance. There are large in-
creases in the number of hits for each increase in the order of magnitude of the training sample;
however, beyond 1 million the benefits of increasing the size of the sample are relatively minuscule.

The Komanduri model performs much better than the other PCFGs until the training size is as
large as 1 million. Past 1 million, this model performs very similarly to the smoothed semantic
models until 10'2 guesses, when the semantic models begin to plateau. Notably, it outperforms the
neural method in early guesses (Figure 3) with a very small training sample (1,000). The guessing
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Fig. 5. The 20 most frequent IP origins in a sample of 5,000 user accounts from 000webhost.

curve of this model is more “jagged” than the others due to the probability quantization approach
used, which groups non-terminals into probability bins.

The Melicher model (neural network) achieved outstanding results when trained with very small
samples. The model trained with only 1,000 passwords was capable of guessing 20 million LinkedIn
passwords with just 1 billion guesses, while the PCFGs (when trained with samples of the same
size) fail to reach even the 10 million mark regardless of how many guesses are output, with the
exception of the Komanduri PCFG. With larger training data, the difference between PCFGs and
neural networks was much narrower, especially within the guessing range that is practical with
guess enumeration (<10'2). Interestingly, the neural models trained with 1 million and 10 million
passwords had worse performance than the model trained with only 100,000 passwords, which
could indicate overfitting.

The lack of a difference between grammars trained with semantic information and grammars
trained with only part-of-speech information is intriguing. We raise three hypotheses to explain
this result: (a) the LinkedIn passwords lack strong English semantic dependencies; (b) LinkedIn
features strong English semantic dependencies, but they are different from those found in RockYou;
(c) English passwords in general lack strong semantic dependencies. Each of the aforementioned
hypotheses is interesting on its own, so in the next sections we will present experiments that are
intended to test them.

4.3 000webhost

The 000webhost list used for the tests contains 15,251,074 clear text passwords that became pub-
lic around November, 2015. It was stolen from 000webhost.com, a large provider of web hosting
services. This list is set 6 years apart from the RockYou list we use as training data, so it has po-
tentially benefited from improved password composition guidelines and user education, relative
to the state-of-the-art in 2009. In addition, the origin of the user accounts in this list seems to be
diverse. Since the leak contains IP addresses for every user account, we extracted a sample of 5,000
accounts and verified the countries of origin with the service ipstack.com. The results show that
the accounts are distributed across a large array of countries, with the largest one (United States)
accounting for only 8% of the IP addresses (Figure 5). The distribution indicates that English pass-
words are not expected to be prevalent, making this list a challenging target for linguistic-based
attacks trained on leaks from North American websites.

4.3.1 Results. The best performing grammar (Komanduri) guesses 13 million passwords (85.2%)
after having output 10%* guesses. 6.8 million passwords are guessed before the 1 trillion mark
(Figure 6). As in the LinkedIn experiment, the Komanduri PCFG largely outperforms the semantic
models when trained with small samples, but shows very similar performance with larger samples.
The differences between POS and Semantic are consistent with those observed in the LinkedIn test.

Unlike in the LinkedIn experiment, the neural network model falls behind the Semantic, POS,
and Komanduri PCFGs, which indicates it may overfit more easily to the training sample. All
PCFGs outperformed the neural network in the early guesses, regardless of the size of the training
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bility estimator (rows). The grammars were trained on the full RockYou data and tested on the full 00webhost
data.

sample. For most of the guessing range considered in Figure 6, the best Weir PCFG performs better
than the best neural model.

5 NON-RANDOM PASSWORDS

The goal of this test is to measure the success of grammars trained on RockYou passwords when
guessing the subset of non-random 000webhost passwords. PCFGs are based on the assumption
that most passwords are non-random, composed of predictable combinations of words. They are
not optimized to guess random passwords. PCFGs successfully guess random passwords by chance,
not by design, given that random passwords mostly do not feature the regularities that are ex-
pected by grammars. Therefore, random passwords can be a confuser when analyzing the quality
of grammars.

In order to isolate the non-random passwords, we trained a neural network to recognize random
passwords. For the training data, the positive examples were generated with pwgen, a tool for ran-
dom password generation. We created 27,200 examples equally distributed over a length range
(4 to 20 characters) and optional parameter combinations (-no-numerals, —no-capitalize, -
symbols). We created the same number of negative examples by randomly sampling from the
subset of RockYou passwords with frequency greater than 1. The data was represented as a one-
hot matrix with dimensions representing character bigrams (9,025 in total), and the network was
set with three dense layers interleaved with two dropout layers, in addition to the input layer. We
trained it with Keras on a TensorFlow backend over four epochs on 90% of the data. The model
scored 99.35% prediction accuracy on our test set of 5,440 examples (10% of the data).

5.1 Results

Out of the 15,251,074 000webhost passwords, we classified 4,138,787 as random. The results of
rerunning the 000webhost experiment on the subset of 11,112,287 passwords are presented in
Figure 7. We observed no changes in the pattern of the previous tests. The difference in perfor-
mance between POS and semantic grammars is still small when only non-random passwords are
considered. In other words, we found no interaction between the factor random/non-random and
grammar type (POS, Semantic).
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Fig. 7. Mean performance at increasing guess cut-offs for grammars trained on the RockYou list and tested
on the subset of non-random 000webhost passwords.

6 CROSS-VALIDATION

We designed cross-validation experiments with RockYou and 000webhost to test the interaction
between the target list and the level of linguistic information in the grammar. We would like to
know if some password lists are more vulnerable to semantic guesses than others, and more im-
portantly, whether semantic information has an impact on guessability. As we did not observe a
benefit in adding semantics to grammars in the Rockyou = LinkedIn and Rockyou = 00webhost ex-
periments, it remains to be seen a scenario where semantics outperforms POS. In cross-validation
the semantic alignment is ideal, as the model is trained with a sample that comes from the same
population as the test set. This grants the model the best shot at capturing patterns that determine
performance during testing.

We instrumented this test as a 10-fold cross-validation, with a training-test ratio of 1 to 9. We
chose this partition ratio, with a small training set, after finding that the performance of gram-
mars trained with different parameters tends to converge with large training sets (Figure 6). We
randomly shuffled the lists of passwords and partitioned them in 10 parts. Each grammar was
trained with one part and tested on the remaining passwords.

6.1 Results

For comparison, we selected the best parameter sets for each grammar type at increasing guess
cutoffs. For instance, in sessions of 1 billion guesses, the best semantic grammars on average are
trained with ML and specificity 1,000.

The results do not show large differences in the performance of POS and semantic grammars.
We observed in both tests a minor difference in favor of semantic grammars in sessions up to
1 billion guesses long. The differences are smaller in the 000webhost experiment, suggesting that
000webhost may not contain strong English-language semantic dependencies (Figure 8). We state
this hypothesis cautiously because it is possible that exploitable semantic patterns exist, but can
not be expressed effectively with our PCFGs due to the their context-free nature. Although the
difference is small in a relative sense, the numbers would make a difference in practice, especially
in the RockYou experiment. For instance, by the guess number 107 semantic grammars have hit
on average 370,000 more passwords than the POS grammar.
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list and tested against the remaining 9/10 (Experiment 4). In each group, mean performance is calculated for
the best parameter sets.

7 LINGUISTIC PATTERNS

In this section, we engage in Type-2 password research [14], where we fix the model and vary the
data in order to understand the variations in composition and use of language across password
lists. With the support of grammar models, we explore notions of linguistic similarity between
sets of password lists. One of the defining virtues of PCFGs is interpretability, which allows us to
conjecture about the reasons a set of passwords is more or less vulnerable. For system administra-
tors, these models can help assess how policies are affecting the way people compose passwords,
and identify potential unintended consequences. By measuring the similarity with publicly avail-
able leaks, one can estimate how vulnerable a password set is to offline guessing attacks that learn
from leaks.

For this analysis, we omit the LinkedIn list, since, unlike most other lists, it does not contain re-
peated passwords, making it difficult to compare patterns. In addition to RockYou and 000webhost,
we add the Matel and Comcast leaks to this analysis. The Mate1 leak was stolen from matel.com, a
dating website, around February, 2016, and contains 27,403,958 passwords that were stored in plain
text. The leak also contains several columns of personal information, which include location, age,
and gender. We downloaded a copy that includes only passwords, from databases.today [4], but
the website leakedsource.ru [2] reported summary statistics on the personal variables that are rel-
evant to this analysis: 84% of accounts come from English-speaking countries, 72% of the accounts
belong to males, over 50% of men are between 28 and 43 years old, and over 71% of the women
are within that range. The Comcast leak, stolen from US internet and cable provider Comcast,
surfaced in November 2015 and contains 590,298 clear text passwords. Demographic information
is not present in the Comcast leak.

We trained Semantic PCFGs on random samples of the four lists (N = 500, 000). Figure 9 lists the
most probable patterns (base structures) for each list, along with their probabilities. The 000web-
host grammar has a distinct probability curve, much flatter compared to the other grammars, and it
is clear that the website’s password creation policy enforced the inclusion of numbers. Surprisingly,
sequences of many digits in the end of passwords seem to be far more frequent than single digits.
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Fig. 9. Top grammar rules (base structures) per password list and their probabilities. Categories include
CLAWS?7 POS tags [8] such as jj for adjectives, special categories such as mname for male name, sequence
classes such as charN/numN for an N-length group of characters or numbers, and semantic categories such
as s.baseball.n.01.

The other leaks show that in the absence of a policy that enforces a mix of numbers and alphabetic
characters users tend to choose pure numeric sequences of six to eight digits. The probabilities
of male and female names seem to follow the demographics of the website: in both Matel and
000webhost male names are more probable; while we do not know 000webhost’s demographics, it
is probably safe to assume that the population of server administrators is predominantly male [5].

In Table 4, we list the most probable rules that contain a Wordnet semantic category. During
training, if a string is recognized as an English word and it is not a proper noun, it will likely be
tagged with a Wordnet sense. Matel and RockYou contain very similar semantic patterns. Love,
which is not listed among the top Comcast rules and appears less frequently in 000webhost, ap-
pears in multiple rules in Mate1 and RockYou, which share also a preference for the word monkey,
and mythical beings (dragon, werewolf, etc.), which do not appear in the other grammars. The most
probable animals in the Comcast leak are bluebird, dog, bluefish, cat, and a variety of seafood fish.
000webhost does not feature animal words among the top categories. Flowers appear verbatim in
Matel and RockYou, while appearing in the general form spermatophyte.n.01 in the Comcast list,
suggesting that the probability mass is spread over many flower-related words.

The patterns in Matel corroborate the qualitative analysis of Wei et al. [22], which found that a
large portion of the most popular passwords in several leaks included either the name of the web
service where the passwords were stolen from, or words that are closely related to the services
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Table 4. Most Probable Grammar Rules that Include a Wordnet Semantic Category

RockYou Comcast Mate1 000webhost

rank pattern P rank pattern P rank pattern P rank pattern P

46 password.n.01 1.9E-3 12 password.n.01 8.4E-3 48 password.n.01 1.6E-3 191  password.n.01 ¢ num1 4.5E-4
57 ppis  s.love.v.01 e ppy 1.6E-3 35  fairy_bluebird.n.01 3.0E-3 55  loven.01 1.5E-3 208 num3 e s.webn.01 e shostn01 4.2E-4
68 ppisl e s.love.v.01 « mname 1.2E-3 48  changen.01 e ppiol 2.1E-3 69  ppisl eslovev.0leppy  12E-3 214 password.n.01 e num3 4.2E-4
77 princess.n.01 11E-3 50 baseball.n.01 2.1E-3 93 jj @ s.male_child.n.01 85E-4 302 plantn.02 e num2 3.1E-4
97 worker.n.01 8.6E-4 54  sunlight.n.01 1.9E-3 98 structure.n.01 7.6E-4 316  love.n.01 ¢ num2 3.0E-4
98 woody_plant.n.01 8.4E-4 70 password.n.01 e num1 1.4E-3 99 woody_plant.n.01 7.3E-4 323  char4 e s.word.n.01 e num3 2.9E-4
106 love.n.01 e num2 7.6E-4 78 worker.n.01 1.2E-3 117  appge  slove.n.01 6.1E-4 371  password.n.01 e num2 2.5E-4
113 rock.n.01  ppy 6.9E-4 83 football.n.01 1.1E-3 119  sexual_activity.n.01 5.9E-4 384 workern.01 e num2 2.4E-4
117 herb.n.01 6.5E-4 90 jj e s.dogn.01 9.9E-4 121  loven.01 e ppiol 59E-4 456 char3 e s.be.v.01 ¢ num3 2.1E-4
123 ji @ s.girln.01 6.2E-4 92 jj e s.carn.01 97E-4 125  jj e s.man.n.01 58E-4 469  plantn.02 e num3 2.0E-4
127 angel.n.01 6.1E-4 95 herbn.01 9.1E-4 129  inhabitant.n.01 5.6E-4 528 food.n.02 e num2 1.8E-4
141 monkey.n.01 53E-4 117 fname o s.dog.n.01 6.8E-4 134  cunt.n.02 5.3E-4 548 plant.n.02 e numl 1.7E-4
143 password.n.01 e num1 5.2E-4 120  catn.01 e s.dog.n.01 6.5E-4 135 maten.01 e« numl 5.3E-4 565 plant.n.02 ¢ num4 1.7E-4
148 baby.n.01 e s.girl.n.01 5.0E-4 121  bluefishn.01 6.5E-4 137  herbn.01 53E-4 578 workern.01 e num3 1.6E-4
154 angel.n.01 e num2 47E-4 122 worker.n.01 ¢ num2 6.5E-4 138  covering.n.02 5.1E-4 613  char4 e atl e cell.n.01  numl 1.5E-4
159 friend.n.01 4.6E-4 127  fluid.n.01 6.2E-4 141  fluid.n.01 5.1E-4 626 maestro.n.01 ¢ num2 1.5E-4
161 produce.n.01 4.6E-4 129  spermatophyte.n.01 6.1E-4 143  beverage.n.01 5.1E-4 640 password.n.01 e num4 1.5E-4
163 ppisl e slove.v.01 e charl 44E-4 132 beverage.n.01 6.0E-4 144  football.n.01 5.0E-4 643  trialn.02 ¢ num3 1.5E-4
166 structure.n.01 43E-4 136  mname o s.dog.n.01 5.9E-4 151  loven.01 ® num2 4.8E-4 661 food.n.02 e numl 1.4E-4
175 baby.n.01 e num2 4.1E-4 150  worker.n.01 e num1 5.2E-4 157 mothern.01 4.7E-4 667  food.n.02 e num3 1.4E-4
176 covering.n.02 40E-4 152 jj e s.skyn01 5.1E-4 161  computer.n.0l 4.6E-4 672 bad_person.n.01 e num2 14E-4
187 cocoa.n.01 3.8E-4 153  ocean.n.01 5.1E-4 170  lovern.01 4.4E-4 675 love.n.01 e num4 1.4E-4
191 sunlight.n.01 3.7E-4 155  condition.n.01 5.0E-4 174  school.n.01 4.3E-4 690 hacker.n.01 e num3 1.4E-4
197 flower.n.01 3.6E-4 158  produce.n.01 5.0E-4 178  love.n.01 ® num3 4.2E-4 698  be.v.01 e char3 e num3 1.3E-4
198 edible_fruit.n.01 3.6E-4 162  princess.n.01 49E-4 179 mcl e slove.n.01 4.2E-4 703  worker.n.01 ¢ num4 1.3E-4
200 butterfly.n.01 3.5E-4 165 bad_person.n.0l 47E-4 181 jj e s.dogn.0l 4.1E-4 711  pass.v.0l e numé 1.3E4
203 jj @ s.male_child.n.01 3.5E-4 168  seafood.n.01 4.6E-4 185  entertainer.n.01 4.1E-4 725  pass.v.01 ¢ num3 1.3E-4
204 inhabitant.n.01 35E-4 176  inhabitant.n.01 4.4E-4 187  sleep_togetherv.01 e ppy ~ 4.0E-4 732  workern.01 e numl 1.3E-4
207 bubble.n.01 3.4E-4 178  summer.n.01 43E-4 192 agent.n.03 3.9E-4 751  Kkillern.01  num2 1.2E-4
208 soccer.n.01 3.4E-4 180  qualityn.01 4.2E-4 198  commodity.n.01 3.8E-4 753 num2 e charl e sbe.v.01 e char2 1.2E-4
217 love.n.01 e ppy 3.3E-4 193  herb.n.01 e num2 4.0E-4 201  assholen.01 3.7E-4 758 maestro.n.01 ¢ num3 1.2E-4
219 ppis o s.love.v.01 o ppy e numl 3.2E-4 197  chemical_element.n.01 3.9E-4 202 producen.01 37E-4 779 num3 e sloven.01 e num3 1.2E-4
220 lover.n.01 32E-4 198  trustn.01 e uh e numl 3.9E-4 208 jj e sloven.01 3.6E-4 867 hackern.01 e num2 1.1E-4
227 love.n.01 o ppiol 3.1E-4 199 bad_personn.0lenum2  39E-4 209 jj e s.girln.01 3.6E-4 912 kingn.01 e numd 1.0E-4
228 sleep_together.v.01 e ppy 3.1E-4 200 contestant.n.01 3.9E-4 221 mythical_beingn.01 3.3E-4 965 killer.n.01 e« num3 9.7E-5
230 commodity.n.01 3.1E-4 208 edible_fruit.n.01 3.7E-4 223 fathern.01 3.3E-4 976  trial.n.02 e num4 9.6E-5
234 football.n.01 3.0E-4 212 entertainer.n.01 3.6E-4 224  promisen.01 3.3E-4 996  char3 e s.be.v.01  num4 9.4E-5
236 worker.n.01 ¢ num2 3.0E-4 214  birdcagen.01 3.6E-4 237 money.n.01 3.2E-4 999  windows.n.01 e numl 9.3E-5
239 mname e s.team.n.01 e charl 3.0E-4 215 npl es.dogn.01 3.6E-4 238 monkey.n.01 3.2E-4 1011 num3 e jj e s.male_child.n.01 9.2E-5
240 ppisl e slove.v.01 e fname 3.0E-4 219 jjes.catn01l 3.6E-4 243  baseball.n.01 3.1E-4 1013 web.n.01 e shost.n.01 e num3 9.2E-5
242 soccer.n.01 e num2 3.0E-4 222  shrubn.01 3.5E-4 246  chemical_element.n.01 3.1E-4 1022 loven.01 e num3 9.1E-5
243 love.n.01 e num3 3.0E-4 224  contestant.n.01 ¢ num2 3.5E-4 247  loven.01 e num4 3.1E-4 1042 jj e s.male_child.n.01 ¢ num2 9.0E-5
248 cookie.n.01 29E-4 229 mname o s.male_childn.01 34E-4 248 fellow.n.06 3.0E-4 1050 maestro.n.01 ¢ num4 8.9E-5
250 angel.n.01 e num1 2.9E-4 230 computer.n.01 3.4E-4 249  flowern.01 3.0E-4 1098 char3 e sbe.v.01 « num2 8.5E-5
251 princess.n.01 e num2 2.8E-4 235 soccer.n.01 e num2 33E-4 252  dragonn.01 3.0E-4 1100 defendern.01 ¢ num3 8.5E-5
252 agent.n.03 2.8E-4 236 agentn.03 33E-4 254 cowboy.n.01 3.0E-4 1112 bad_person.n.01 ¢ num3 8.4E-5
257 worker.n.01 e num1 2.8E-4 237  june.n.0l1 e num4 33E-4 256  killern.01 2.9E-4 1114 food.n.02 e num4 8.4E-5
259 mythical_being.n.01 2.7E-4 241  expert.n.01 3.2E-4 264 password.n.01 e numl 2.9E-4 1119 nutrimentn.01 ¢ num2 8.4E-5
262 basketball.n.01 2.7E-4 245  jj e s.day.n.01 3.2E-4 266  sleep_together.v.01 2.8E-4 1134 web.n.01 @ shost.n.01 e num4  8.2E-5
271 princess.n.01 e num1 2.6E-4 246  summer.n.01 e num2 3.2E-4 268  sleep_together.v.01 e ppiol 2.8E-4 1137 mustangn.01 e num2 8.2E-5

theme. Matel passwords were found to have particularly high frequency of words related to love,
dating, and the service name, “mate.” Likewise, the 000webhost leak features many patterns con-
taining the category worker and hacker, in addition to patterns containing the categories defender
and windows, and the name of the service itself.

7.1

Graphical Model

We built high-level graphical models that describe the dependencies between the major classes
of tokens found in the password leaks. These models capture coarse structural features, allowing
at-a-glance comparison. Formally, we constructed a Markov random field (also known as pairwise
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Fig. 10. Probabilistic graphical model capturing the dependencies between high-level grammatical classes.
Node color encodes unconditional class probability and globally scaled. Edge width encodes the ratio be-
tween the probability of two classes co-occurring and the sum of the probability of each class. It is scaled
per facet.

Markov network), which is an undirected probabilistic graphical model, and it is not to be confused
with a Markov Chain [14], where the edges are directed and represent conditional probabilities. In
our graph, edge width encodes the relative joint probability ¢ = P(A, B)/(P(A) + P(B)), where A
and B are token classes, and node color encodes the class probability P(A). We define eight token
classes: name (first names, surnames, other proper nouns), number, symbol, verb, noun, adjective,
char (non-word character strings), and other.

The graph, shown in Figure 10, captures succinctly the dependencies between classes, and allows
us to make a few statements about the high-level patterns in these lists. Symbols, verbs, and adjec-
tives have consistently lower probability across all leaks. The 000webhost list contains a unique
pattern: the probability of numbers is approximately 1, and the strength of the pair (number, char)
is the highest across all leaks (p=0.4). The importance of character sequences in 000webhost is
boosted by the high occurrence of non-English words, which are mostly parsed as character se-
quences. In the other lists, which are mostly English-speaking, these high-level dependencies seem
fairly regular: there is a strong link between number and char (except in RockYou) perhaps due to
the use of random passwords, but also strong dependencies between nouns/names and numbers.

7.2 Cross-Leak Experiment

A more pragmatic way to evaluate the similarity of password samples is by training a model with
one sample and testing the model’s effectiveness at guessing passwords from the other sample. We
trained grammars on each password sample (000webhost, Comcast, Matel, and RockYou) with a
fixed set of training parameters: Laplace estimator, specificity 5,000, and semantic information.

Then we ran experiments with every combination of training and test set. The results are shown
in Figure 11, grouped by test set. By this practical measure, the 000webhost list is the most distinct
list: grammars trained on other leaks never achieve 75% success against it; grammars trained on
it underperform against other leaks. Comcast, RockYou, and Matel perform almost identically
against 000webhost, confirming the structural and linguistic similarity we observed in the previous
section.

8 DISCUSSION

The experiments reported in this article were intended to quantify the influence of parameters
of the Semantic PCFG (semantic specificity level, non-terminal symbols) and of PCFGs in general
(training sample size, probability estimator). In this section, we discuss our main findings.

PCFGs quickly converge as the size of training data increases. We observed convergence of
the guess counts at many levels: probability smoothing and MLE; POS and Semantics; semantic
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Fig. 11. Results of the cross-leak experiment. Each facet represents a target password list, and each line
represents a grammar.

specificity values; and the Semantic and Komanduri methods. When comparing two training sizes,
Melicher et al. [16] noticed that the larger (over 100 million passwords) and more heterogeneous
training sample reduced the effectiveness of all tested models, including a PCFG, in a test against
a single 000webhost sample. Here, when exploring multiple sample sizes, we found the influence
of sample size to be positive following a logarithmic curve. After 1 million passwords the gains in
effectiveness begin to disappear, and so do differences caused by different parameters.

Probability smoothing helps with small training data. We found that probability smoothing, cou-
pled with vocabulary expansion, leads to large performance gains when the size of the training
sample is small. This result corroborates Komanduri’s [12] findings and expands on them by in-
cluding the relation between smoothing and sample size.

Semantic information beats POS only with small training data. Within the range where guess
enumeration is practical (up to 10'? guesses) and the training sample is small, it may pay off to
use semantic information, as we found they are at least as effective as POS grammars in that
range. When POS grammars were more effective in our tests, it was usually after 10'? guesses.
One possible explanation is that the semantic grammar can readily generalize to produce unseen
combinations. As the training set size increases, the advantage offered by semantic generalization
diminishes, as more combinations are observed in the data and thus directly learned. Most of the
time, however, grammars trained with semantic symbols (in addition to POS symbols) do not guess
more passwords than grammars trained with POS symbols only. While our analysis shows that
many semantic regularities exist in passwords, the vocabulary used in passwords is limited, which
may explain the little to null gain achieved by grouping words based off of meaning.

The best model (PCFG or NN) depends on the target dataset. In the 000webhost tests, most
PCFGs outperformed the neural model. This is surprising, given that Melicher et al. [16] showed
superior guessing performance of the same neural model over the Komanduri PCFG in tests with
000webhost.

In our tests with the largest training sample, the neural model guessed around 65% of the
000webhost passwords. This differs from what Melicher et al. observed from a sample of 30,000
000webhost passwords (over 93% guess rate). Possible reasons for this difference include the testing
of a sample from 000webhost vs. the entire dataset, differences in training data (we use only Rock-
You vs. RockYou + Yahoo), or differences in the configuration that could have caused overfitting of
the neural network (we used two extra layers). We discuss in more detail the methodological differ-
ences in Section 9. Our results also show a much improved performance in the Komanduri figures;
one possible reason for this disparity is if the linguistic (Google n-gram corpus) tokenization fea-
ture of the Komanduri PCFG was not used by Melicher et al. In their report, several features of the
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Komanduri PCFG (e.g., terminal smoothing and hybrid structures) are mentioned, while linguistic
tokenization is omitted.

The LinkedIn tests were more balanced—only the Komanduri PCFG rivaled the neural model
performance. We observed a notable overlap between the Komanduri PCFG and the neural models
when training with large samples; but the neural models were clearly superior with small training
samples (<1,000,000). We believe that, despite the mixed results we observed, neural models show
great promise considering they have been introduced only recently as password models.

Language information and performance. Despite having more sophisticated language processing,
the Semantic and POS models do not guess more passwords than Komanduri’s PCFG. We believe
this can be attributed to many factors. The Komanduri model features a reserved UNSEEN symbol,
which represents all unobserved strings within a class. During guess enumeration, this symbol
generates all possible strings of the class, in a brute-force fashion; while in the Semantic/POS
models they can only generate words. As a result, the vocabulary of the Semantic and POS models
is more limited. Komanduri’s mixed-class non-terminals allow the grammar to learn, in addition to
password templates, literal passwords. This feature may be behind the Komanduri model’s success
in early guesses. Finally, unlike the Semantic and POS models, the Komanduri model learns letter
case information.

Linguistics and statistics. Many improvements of Komanduri’s model are statistical in nature,
while the Semantic model focuses on adding more language information. However, the improve-
ments of both models are not in conflict, and could work well together. Future work could investi-
gate the addition of POS and semantic information to the Komanduri model, or the introduction of
letter case information, mixed-class terminals, and more sophisticated handling of unseen strings
to the Semantic model.

POS/Semantic grammars are less effective in short sessions. When LinkedIn is used as the target
data, our results revealed that the PCFGs of Weir et al. and Komanduri tend to achieve better guess-
ing results in the first attempts (at least up to 10° guesses). This may be due to the POS and semantic
word groupings offering only so much flexibility. For instance, the POS group JJ, which represents
adjectives, has some rather unlikely words, such as “quadrilateral.” But because the probability of
this group is boosted by extremely popular words like “hot,” rare words may be attempted early.
This big wave lifts all boats effect hurts the effectiveness of POS and semantic grammars in short
sessions. Unfortunately, it is unclear how to break the group of adjectives into subclasses, as it does
not have a hierarchical organization in WordNet. Future work could test a grammar representation
where adjectives are not grouped; instead, they would be learned verbatim.

Semantic PCFGs are useful when interpretability is important. Our results show that the Koman-
duri PCFG is a superior PCFG model when the purpose is to estimate password probabilities, while
the Semantic PCFG remains a good choice when interpretability is important. The latter offers a
more detailed breakdown of a password’s structure, which can enable a better understanding of
the patterns in a password sample and more explainable password strength recommendations.

9 LIMITATIONS

In our password guessing experiments, the models make no assumptions about the target pass-
words. This means no restrictions on the length or composition of passwords that models are
trained with or can output. It is common in other works to include constraints that follow the
password policy of the target passwords; for instance, Melicher et al. [16] set their models to out-
put only passwords longer than eight characters when testing against 000webhost.
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The configuration used for the neural network in our experiments is slightly different than the
configuration reported by Melicher et al. (see Supplemental Materials for the configuration files).
Our networks have four LSTM layers of 1,024 units, instead of three LSTM layers of 1,000 units;
and three dense layers instead of two. This might have contributed to the poorer performance
we observed in our experiment if the increased model complexity caused the network to overfit
to the RockYou passwords. Likewise, it is possible that the superior performance in the LinkedIn
experiment is due to additional layers.

10  CONCLUSION

We presented a detailed empirical study of the factors that impact the performance of linguistic
password models in offline guessing attacks. By evaluating guessing performance, we indirectly
assessed the ability of models to learn general patterns. Our study focused on parameters of the
semantic password model, a PCFG trained with part-of-speech and semantic information.

In our experiments, we found that grammars trained without probability smoothing tended to
overfit when the training samples were small. Smoothing was found to grant great power to PCFGs
trained with small samples: a grammar trained with only 1,000 RockYou passwords was able to
guess almost 5 million 000webhost passwords. We observed diminishing returns for increasing the
training sample size beyond 10 million passwords.

Veras et al. demonstrated that grammars with semantic and POS information largely outper-
formed Weir et al.’s grammar. Here, we isolated the effects of POS with and without semantics,
and found that the benefit of adding semantic information to grammars was small compared to
the gains resulting from adding POS information, and depended on the size of the training data.
Moreover, we found that the Komanduri PCFG has better guessing power than the other PCFGs
tested, and that there are cases when the neural model of Melicher et al. has worse guessing power
than the PCFGs we tested.

We leveraged the explanatory power of the semantic model to examine recent password leaks
qualitatively. Our analyses revealed that the RockYou and Matel leaks have great semantic and
structural overlap, while 000webhost passwords have remarkably uniform structure but little se-
mantic uniformity, at least as captured with an English-language grammar. The patterns we found
expose semantic preferences that align with the demographics and themes of the services that
leaked the passwords, and reveal the effect of password policies on the structure of chosen pass-
words. The similarities between password leaks mirrored the results of cross-leak guessing exper-
iments and the high-level co-occurrence patterns encoded in graphical models of the grammars.

Service administrators looking to obtain reliable password strength estimates could run param-
eter sweep experiments, as we have presented here, with multiple training sets. Parameter ranges
should be chosen to reflect the considered threats; for instance, small, in-sample training data
matches a scenario where a subset of the passwords was exposed (either directly, or from users re-
using passwords leaked from other data sets); while large, out-of-sample data matches a scenario
where another leak is used to train the model. The resulting grammars can be used in reactive
password checking programs, or as a password meter that makes use of the PCFG’s probabilities.
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