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Abstract We explore the feasibility of Tacit Secrets: system-assigned pass-
words that you can remember, but cannot write down or otherwise commu-
nicate. We design an approach to creating Tacit Secrets based on Contextual
Cueing, an implicit learning method previously studied in the cognitive psy-
chology literature. Our feasibility study indicates that our approach has strong
security properties: resistance to brute-force attacks, online attacks, phishing
attacks, some coercion attacks, and targeted impersonation attacks. It also
offers protection against leaks from other verifiers as the secrets are system-
assigned. Our approach also has some interesting usability properties, a high
login success rate, and low false positive rates. We explore enhancements to
our approach and find that incorporating eye tracking data offers substantial
improvements. We also explore the trade-offs of different configurations of our
design and provide insight into valuable directions for future work.

Keywords Authentication · Security · System-Assigned Passwords · Implicit
Learning · Contextual Cueing

1 Introduction

The security of user-chosen passwords has become a serious concern to or-
ganizations and individuals alike. Dramatic improvements have been made in
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offline guessing (or trawling) attacks [1,2] and targeted attacks that exploit a
user’s reused passwords [3]. The threat of these attacks is growing with the in-
creasing amount of publicly leaked password data [4]. Perhaps the most damn-
ing are attacks that combine leaked password data with personal information—
such online targeted password guessing attacks have been shown to guess over
32-73% of passwords within 100 attempts [5]. Password managers offer one
solution to these problems by allowing users to generate and securely store
random passwords. However, many users distrust them given recent password
manager data breaches [6] and software vulnerabilities[7]. Another solution,
for a small number of accounts with high security requirements, is to assign
users a random, system-assigned password; however, these are well-known to
have significant problems with memorability [8] and thus users writing them
down. Writing down passwords is only secure in some situations, e.g., when
they are stored in a physically secured location such as a safe. For example,
an organization that uses a password or PIN to access an important safe or
server room is unlikely to have secure physical storage nearby. This problem
motivates our research into a completely new approach for system-assigned
passwords.

In the present work, we investigate the feasibility of random, system-
assigned passwords that can be ‘remembered’ without being written down.

We explored literature on implicit learning and identified a promising
method called Contextual Cueing (CC). In CC, users are trained to implicitly
learn the location of a target item on a display full of many distractors. Each
display can be thought of as a character in their password, and the entire pass-
word is a set of such displays. Knowledge of the password is demonstrated by
a challenge-response system that authenticates based on performance metrics
that indicate the password was implicitly learnt.

The result is a method of creating what we call Tacit Secrets: system-
assigned passwords that can be remembered, and also cannot be written down
or explained to others. The use of CC may also have interesting properties for
accessibility; for example, it has been found to remain intact in several neu-
rological and mental disorders [9], and to work with subjects having dyslexia
[10,11]. Our feasibility study indicates that our design has high authentica-
tion success rates (86-97%, depending on the performance metrics used), and
low false positive rates (0.4-9.2%, depending on the performance metrics used).
Our security analysis indicates that our approach is resistant to offline guessing
attacks, online guessing attacks, phishing attacks, and some types of coercion
attacks. It is also resilient to targeted impersonation and leaks from other ver-
ifiers due to the Tacit Secret being system-assigned. Finally, it also provides
some resistance to observation attacks, such that a successful attack would
require multiple observations.

Use Case. Tacit Secrets could be used for any system requiring the strong
security guarantees offered by system-assigned passwords. However, our cur-
rent design has long login times that limit its practicality. We believe the
current design we studied would still be useful in some environments with
high security requirements, e.g., unlocking a critical system configuration ter-
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minal, unlocking a high-security vault or room, unlocking an encrypted file,
etc.

Our version that incorporates eye-tracking indicators is expected to have
login times on the order of 1.5 minutes, and thus might also be acceptable
for infrequently accessed web or financial accounts. If future work shows the
implicit memory effect lasts for longer time periods, it may also be useful for
fallback authentication.

Contributions. Our contribution is the design and feasibility study of a
method for producing Tacit Secrets, which the user can remember, despite the
fact they cannot write them down. This design should be of interest for use in
the environments discussed above. Also, our positive feasibility study results
demonstrate that implicit learning can be used to produce a user authentica-
tion system with high accuracy, and strong security properties, and as such
might be employed in future authentication systems research.

The remainder of this paper is organized as follows. Related work is dis-
cussed in Section 2. Our Tacit Secrets design is presented in Section 4.3. Our
feasibility study design is described in Section 4, the results of which are pre-
sented in Section 5. Section 6 presents our analysis of the performance of
different configurations of our design and Section 7 analyzes the security of
the recommended configurations. Section 8 discusses limitations to consider
when interpreting our results. We conclude the paper with a discussion of our
results and in Section 9 and future work in Section 10.

2 Related Work

We focus on the related work most relevant to our approach to creating
Tacit Secrets: system-assigned secrets, authentication systems that employ im-
plicit memory, and authentication systems that have coercion-resistant prop-
erties.

2.1 System-Assigned Secrets

System-assigned passwords are much stronger than user-chosen passwords,
but the practice is well-known to lead to problems such as poor memorabil-
ity and requiring a written copy for a long period of time [8]. Writing down
passwords is insecure unless the written copy is stored in a physically secure
location, or using strong encryption on a device. Some attempts have been
made to improve the memorability of system-assigned secrets so they may be
usable. Schechter et al. [12] examined the impact of a training period of a few
weeks that employed spaced repetition. The findings were that 88% of users
were able to recall their passphrase after 3 days, however the training period
was quite long (about 12 minutes over the course of 10 days on average) for
memorizing the full 56-bit secret. Shay et al. [13] investigated the potential of
using random system-assigned words as opposed to randomly assigned charac-
ters, and encouraging users to imagine a scene that links them. Their results
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were unfortunately not very positive; only 51% could recall the passphrases
after 2-5 days. Jeyaraman and Topkara [14] proposed random generation of a
password and automatically creating a mnemonic phrase to help recall, but its
efficacy is unknown. Al-Ameen et al. [15] proposed a series of cues to aid recall
of system-assigned passphrases; pilot studies show this method holds promise
as all users recalled their phrase after one week. However, the security offered
by the system tested is limited as it has only a 28-bit key space, is vulnerable
to coercion attacks, phishing attacks, and observation attacks involving a sin-
gle session. We study Tacit Secrets with the goal of achieving strong security
desired from system-assigned secrets, but that can also be recalled.

2.2 Authentication Systems That Employ Implicit Memory

Denning et al. [16] proposed an authentication scenario which employs a
priming effect as a mechanism using implicit memory. Their suggested image-
based authentication system used pairs of images; that is, complete and de-
graded counterpart images. They initially showed sets of complete images and
for later authentication, degraded images are exposed through a familiarization
task. Since the scheme involves the conscious learning of the images, it does
not provide any resistance to coercion attacks. Furthermore, the requirement
to provide a large set of images makes the system less deployable.

The work most similar to our approach is the scheme of Bojinov et al.
[17], as it also offers the property that users are unaware of their secret and
thus cannot easily communicate it. Their scheme used the Serial Interception
Sequence Learning (SISL) task originally introduced by Sanchez et al. [18].
Subjects were trained to implicitly learn a random key sequence using a game
similar to the Guitar Hero video game. After a 30 to 45 minute training period,
they were tested through a session of playing the same game. The authentica-
tion process in this scheme is based on the users’ performance (the percentage
of the correct responses and RT) on the learnt sequence versus random ones.
Only 71%, 47%, and 62% of participants could successfully authenticate using
this method immediately, 1 week, and 2 weeks later respectively. No further
investigations of this system have been performed. Tacit Secrets has substan-
tially better authentication success rates, registration times, and login times.
Other relevant security properties, such as false positive rates and resistance
to observation attacks were not evaluated for this system.

Recently, Castelluccia et al. [19] proposed MooneyAuth, a scheme that
also employs implicit memory to reduce the cognitive burden of recalling tra-
ditional passwords. During enrollment, users are provided with Mooney images
that work as primes, along with the corresponding original images and their
labels. Mooney images are difficult to recognize at first look; however, during
enrollment, users learn the association between these images and their labels.
After training, users outperformed labeling these previously seen Mooney im-
ages over other images during the authentication phase. A long-term study
revealed substantial improvements for MooneyAuth compared to a previous
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implicit-learning based authentication scheme [16], demonstrating its poten-
tial for fallback authentication. MooneyAuth has an average authentication
time of 3.5 minutes, 0.1% FAR, and 97.14% TAR. Although the scheme offers
performance improvements over comparable previous work [16], it does not
provide resilience against a number of attacks that our Tacit Secrets approach
does (e.g., observation, guessing and coercion attacks). Additionally, our Tacit
Secrets approach’s recommended configuration has shorter login times and
improved accessibility. Please see Section 9 for a full comparison.

2.3 Coercion Resistant Authentication

Since one of the properties of Tacit Secrets is its resistance to certain types
of coercion, we discuss other approaches that provide some degree of coercion
attack resistance. Authentication based on physical tokens (i.e., “what you
have”) can be given to a threatening attacker and is thus highly vulnerable
to coercion. Most knowledge-based forms of authentication (i.e., “what you
know” ) are explicitly memorized and can be communicated, thus can also be
given to an adversary. One way to protect users in such systems is through
panic passwords [20], where any user has a regular password and another,
panic, password. If input, the panic password communicates a duress situation
to the server. While this approach can help, it can lead to more cognitive load
for the user to memorize both passwords and the panic password could be
forgotten in a stressful situation.

Some static biometrics (i.e., “who you are”), are vulnerable to coercion
whereby the attacker makes a copy of the user’s biometric data for use later on
(e.g., fingerprints [21], iris [22], and facial recognition [23]). Some behavioural
biometrics can resist some coercion attacks. Babu et al. [24] propose a method
that uses users’ transaction time behaviours for authentication. De Luca et al.
[25] propose an implicit authentication method for touch screen smart phones
whereby they authenticate users based on how they interact with the device
using a sequence of time series of touch screen data. Gupta et al. use voice [26]
and skin conductance [27] measurements to provide a key generation mecha-
nism with reduced accuracy while the user is under duress. They showed these
measures can reveal the user’s emotional states and recognize if he/she is under
the attacker’s control; however, for the suggested voice solution, some people
may not be able to speak due to injuries or mental deficiencies, and a person
can lose his/her voice temporarily due to illness such as cold, cough, etc. Skin
is also affected by several external factors such as temperature, illness, etc.
Some advantages Tacit Secrets have over these mechanisms is that they are
system-assigned (and thus have configurable security for higher-security envi-
ronments), are more difficult to observe in a way the user cannot detect (e.g.,
through social engineering), and can be changed more easily if compromised.
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3 Tacit Secrets Design

Our design of a Tacit Secrets approach uses implicit learning (IL). IL is
the acquisition of skills through the repetition of a task; these skills are ac-
quired unconsciously, unintentionally, and without having declarative knowl-
edge about what has been learnt [28,29,30]. IL is associated with complex
features or probabilistic patterns, whereas explicit learning is most proba-
ble when stimuli are salient [31]. Examples of where IL is involved include
perceptual-motor skills, language acquisition, social intuition, and detecting a
target in a complex scene [29]. We are inspired by a method known to trigger
IL for spatial contexts, called Contextual Cueing (CC) [32], as it has been
found to be robust over time (lasting for at least six weeks [33]). We provide
a description of CC in Section 3.1 and how our approach makes use of CC in
Section 3.2.

3.1 Contextual Cueing

Contextual Cueing (CC) is a mechanism [34] through which visual atten-
tion can be guided by implicitly learnt knowledge [35]. CC was first developed
by Chun and Jiang [34] to study implicit learning and memory. To provide
insight into the process, consider that objects and events occur in a rich vi-
sual context, aiding their recognition. This context tends to be predictable,
because one’s visual experience is not based on a random sample of objects;
it is structured and repetitive. For example, we may need to identify a traffic
signal amongst an array of information in a busy street. Such a search might
be facilitated by repeatedly seeing that the location of traffic signals are most
often to the right of street signs.

A context can be defined as a 2-dimensional spatial configuration of irrel-
evant objects (aka. distractors) in which a target is presented. In effect, CC
relies on the positions of the distractors to provide spatial cues for the location
of a target. The entire context is shown on a display, for a fixed period of time.
See Figure 2 for an example of a display used in CC experiments.

In cognitive psychology experiments of CC, subjects are shown a set of
displays where some subset are repeated (i.e., shown more than once in the
session). For each display, the subject is asked to find the target, and given a
time limit of 3 seconds. Over time, for repeated displays, subjects’ performance
in finding the target improves [30,36,32]. Chun and Jiang [32] found that the
difference of reaction time between previously unseen (novel displays) and
seen (repeated displays) was significantly different. Reaction time (RT) refers
to the time it takes a participant to find the target; see Figure 3 for this effect
on our experiment (as described in Section 4). Chun and Jiang [32] showed
that participants were typically unable to explicitly recognize learnt contexts
through a post-experimental classification task.
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3.2 Tacit Secret Design Overview

On a high level, our design trains users to implicitly learn a secret set
of displays, which becomes their Tacit Secret. We call user i’s secret set of
displays Ki. The training/registration of a Tacit Secret is explained in Section
3.3. The login/verification process is described in Section 3.4.

3.3 Training of Tacit Secrets

The goal of training is to ensure the user i implicitly learns a set of dis-
plays; this is accomplished during account registration. Let D be the full set
of displays that can exist under the system parameters. Ki (user i’s secret) is
a set of displays, drawn at random from D. Note that |Ki| � |D|. We use Ni

to refer to a sequence of novel displays for i; i.e., displays that are not in Ki;
these are drawn at random from the full pool of possible novel displays (i.e.,
D \Ki). We also use the notation Ri to refer to a sequence of repeated displays
shown to i, where each display is drawn at random from Ki.

In the training session, user i is shown Ri and Ni, which are interleaved at
random. For each display, i must search for a single rotated ‘T’ (the target)
among many ‘L’s (the distractors; see Figure 1). Once the target is found,
i must report the target orientation as quickly as possible by pressing the
corresponding keyboard arrow key. Pressing the incorrect key, or not pressing
any key, results in an invalid response for that display. There is a time limit
of 3 seconds for each display that if the user does not answer, the display is
removed and the new one is shown. At the end of the training session, the user
is expected to have implicitly learnt the configuration for the displays in Ki,
due to repeated exposure to these displays.

Fig. 1: Illustration of different displays with and without background image.

3.4 Verification of Tacit Secrets

To be authenticated at a later time, a user i is provided with the same task
as in training. The sequence of novel displays in Ni are once again drawn ran-
domly from D\Ki, so they are unlikely to have been seen before. The sequence
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Fig. 2: An example display arrangement during the training session.

of displays in Ri are drawn again randomly from Ki. By demonstrating better
performance on the displays in Ri over the displays in Ni, the user i is demon-
strating knowledge of the displays in Ri (and thus Ki). For each display, a
response is considered incorrect if the target orientation is not correctly input
within the time limit (i.e., 3 seconds). We only consider performance data for
the responses labelled as correct. Users only have one chance to input a target
orientation for each display.

Performance Data. For performance data used in making authentica-
tion decisions, we use RT, and the eye tracking metrics of fixation counts and
saccade counts. RT and eye tracking behaviors have been used in the cognitive
psychology literature to measure CC IL effects, but averaged over the whole
sample of participants rather than on a per-user basis. Outside of an authenti-
cation context, Chun et al. [34] found the general RT trend to be significantly
lower over a set of subjects for repeated displays than novel displays. Zhao et
al. [37] studied eye movement patterns when performing CC tasks outside of an
authentication context. They performed their analysis over their whole sam-
ple of participants and note the group’s trend is that repeated displays had
improved performance, leading to significantly fewer fixations and saccades
before the target was found.

We note that it may be possible in future work to incorporate further met-
rics, e.g., related to mouse movements or touch screen behaviours, depending
on the environment.

Verification Method.
We present verification methods that consider each metric alone, and all

three in combination. For each metric alone, we consider login success to occur
if the Mann-Whitney (MWU) test is significant with α = 0.05. The null hy-
pothesis for the MWU test is that the distribution of the performance metric
(either RT, fixation count, or saccade count) for Ri is the same as for Ni,
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against the alternative hypothesis that the distribution of the performance
metric for Ri is significantly different than for Ni. This test was chosen as
it is nonparametric and the performance data (i.e., RT, fixation, and saccade
count) is not normally distributed. Also, the performance data is ordinal. For
all three metrics in combination, we consider login success to occur for user i,
if i has significantly different patterns (using the MWU test, α = 0.05) for at
least two of the three authentication measures (i.e., RT, saccade, and fixation
counts) on Ri vs. Ni. This approach has previously been used for challenge
questions [38]. We note that we also evaluated the use of a KNN classifier, but
its performance was inferior.

4 Feasibility Study

Here we describe our study to test the feasibility of our approach to Tacit
Secrets. The experimental procedure was approved by the Research Ethics
Board at our university. The study ran over two weeks in a laboratory envi-
ronment in order to collect eye-tracking data. Participant demographics are
described in Section 4.1, study structure in Section 4.2, and design considera-
tions for our implementation and study in Section 4.3.

4.1 Participants

Thirty participants (18 males and 12 females, aged between 18 and 25
years) were recruited through email and posters which were distributed across
the university campus. These participants were paid $10 each to participate
in our lab study and entered into a draw for $50. The inclusion/exclusion
criteria consisted of being with normal or corrected-to-normal vision acuity,
and not to be registered in any computer security-related program. All of the
participants were students, where 67% of the participants had a high school
degree (or equivalent) and 33% had a university or college degree. 30% of the
participants majored in engineering and applied science, 30% science, 23%
business and IT, and the other 17% majored in health and social science. 53%
of our participants had normal and 47% had corrected-to-normal vision.

4.2 Study Structure

The participants were asked to attend three sessions. The sessions were
scheduled according to the participant’s convenience, within the following con-
straints: the second session is two days after the first training session, and the
third session happens a week after the second session. The procedures for all
three experimental sessions were the same except that the pre-experimental
questionnaire is only presented during the first session.

Participants were instructed to sit approx. 60 cm from a 23-inch LCD dis-
play monitor with a sample rate of 85 Hz and to press keyboard arrow keys
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in response to stimuli. In the first session, participants were asked to sign
the consent form and then were provided written and oral instructions. They
were calibrated with the eye-tracker and started using the application after
they agreed to their participation in the experiment. The study purpose (in
the consent form and invitation letter) was left intentionally vague, so they
were not informed about the exact process of learning that the experiment
was testing until after the end of the experiment. The reason for this was
that we wished to avoid the possibility of this knowledge affecting their per-
formance and thus the unconscious learning that the experiment aims to test.
The experiment’s purpose was debriefed at the end of the third session.

During pilot testing, we realized that in addition to a mandatory break that
is given between the training and testing phase, the task should allow users
to initiate optional rest-breaks when they felt tired. Breaks were initiated by
pressing the ‘Esc’ key and the experiment resumed by pressing ‘Enter’.

4.3 Study Considerations and Parameters

Here we explain the initial design considerations and parameters of our
implementation and feasibility study.

Number of Displays per Session. Our primary goal was to ensure we
had sufficient data to test feasibility of the approach. Thus, we leaned toward
longer training sessions than was likely necessary. To decide on an appropriate
number of displays per session, we referred to previous studies on CC [39]
and found they suggest that the cueing effect arises after the fourth block
of 16 displays, and there are no reliable trends in RT before this block. The
decreasing trend for the RT would exist until block 15 and 16 [40,41]. Thus,
our training phase consists of 240 trials (i.e., displays), divided into 15 blocks.
Each block contains 16 displays, where 12 are from Ri, and 4 are from Ni.
Figure 2 shows an example of how displays are presented in each block during
the training session. In each display, there are 48 (i.e., an invisible matrix of
6× 8) possible target locations. A look at the RT trends in our training data
indicate that implicit learning effects are relatively stable after 7 blocks, so
it is possible we could reduce the number of displays in the training session
accordingly, and thus the training time.

For verification/login, there is a trade-off related to the length of the se-
quences Ri and Ni; for accuracy, there must be enough performance data
recorded for each sequence, but longer sequences means a longer login time.
We aimed to gather sufficient data to test the feasibility of the approach,
and simulate the feasibility of shorter sequences using the data collected. We
present the simulation results in section 6 to evaluate how optimized these
sequence lengths can be in future implementations. To ensure sufficient data,
we tested verification/login sessions containing 100 trials where for each user
i, Ri contains 50 displays drawn randomly from Ki, and Ni contains 50 ran-
dom displays drawn from D \Ki. On the day of training, we also performed a



Enhanced Tacit Secrets 11

short session where Ri contains 20 displays drawn randomly from Ki, and Ni

contains 20 random displays drawn from D \Ki.
Display Variations. The training and login tasks contain two variations

of displays of size 1440 × 900 pixels: array-based (standard CC; see left side
of Figure 1) and scene-based which contained a background image (see right
side of Figure 1). Scene-based displays elicit scene-based cueing, which is re-
lated to a background scene and array-based cueing occurs based only on the
position of distractors in the context. Brooks et al. [42] suggest that when a
particular repeated array had been consistently associated with a particular
scene background, it produces more robust contextual cueing. They found that
training with scene-array displays led to joint learning of the two cues, such
that cueing was disrupted when either the scene or the array is changed. In
our experiment, we used natural scenes as backgrounds for half of the repeated
displays. These images were randomly chosen from our database. Participants
searched for a target that was predicted by both the background scene and the
locations of distractor items. We also adjusted the luminance of the target and
distractors across displays in order to increase search items’ contrast against
the background scene. In all displays, the target appears equally likely in each
of four quadrants of the screen to eliminate learning of location frequencies for
the repeated stimuli.

Search Strategy. To facilitate access to implicit knowledge, thereby al-
lowing a consistent Contextual Cueing Effect to develop, we asked our subjects
to use a passive strategy while searching for the target. We notified them that
the best strategy for this task is to be as receptive as possible and asked them
to “let the unique item pop into your mind as you look at the screen”. Lleras
et al. [30] hypothesized that using different search strategies: active (an active
effort to find the target) vs. passive (intuitive search, wherein they need to be
as receptive as possible, let the unique item ‘pop’ into their mind while looking
at the screen, let the display and intuition determine the response, and tune
into ‘gut feeling’), can have different results while performing the CC task.
They experimentally showed that those subjects who used a passive strategy
for the search task had more substantial CC effects. We do not know what
strategy users really used; however, providing a set of precise and consistent
instructions helps us guide users from arbitrarily choosing a search strategy.

Positive/Negative Feedback. To indicate that a user’s response has
been recorded by the system, after pressing a key, a border appears around
the display which is either green (when the correct arrow is pressed) or red
(when an incorrect arrow is pressed). This decision follows Lleras et al. [43],
who investigate how contextual learning is considerably sensitive to external
rewards associated with the search interactions.

5 Results

Here we report the results of our feasibility study. An overview of perfor-
mance data trends for the whole participant sample is reported in Section 5.1.
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Fig. 3: RTs for novel and repeated displays, for progressive blocks in the train-
ing session. The CC effect is evident after 4 blocks and stabilizes after 7 blocks.

We break up the remainder of the analysis according to the performance data
types used: RT alone in Section 5.2, eye tracking data alone in Section 5.3,
and combining both RT and eye tracking data in Section 5.4. We report the
results of our simulations to determine optimal configurations separately in
Section 6.

5.1 High-Level Overview of Performance Data Trends

To confirm the CC effect, we first analyze the search RT for the entire
sample of participants. Figure 3 indicates the overall RT performance for the
repeated displays compared to novel ones for all our participants.

5.2 Using RT Performance Data

5.2.1 Authentication Success Rate

Running the MWU test (with α = 0.05) on the recorded RT data for all
participants for sessions 1, 2, and 3 revealed that 100%, 88%, and 86% of users
had a significant difference between the RT for the displays in Ri versus Ni

(recall the verification method described in Section 3.4). Note that we improve
accuracy even further by incorporating eye-tracking data in Section 5.4.
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Fig. 4: RT in milliseconds, for each session, for the set of all 30 participants.

5.2.2 False Positives

Here we evaluate the false acceptance rate (FAR), i.e., the proportion of at-
tempts that would be wrongly classified as legitimate. To evaluate this threat,
we used each user’s display sequence labels (i.e., ‘novel’ and ‘repeated’) to
re-label each other user’s sequence and see if the newly-re-labelled sequences
passed or failed authentication. In our implementation, different users have
different sequences, containing a different order of display types. In this sce-
nario, we assume attackers try to use their own performance data to login
to another user’s account. Our three authentication sessions had a different
number of displays: 40, 100, and 100 for Session 1, 2, and 3 respectively. Thus,
we performed the analysis through labelling each user’s display sequence for
Session 1 with the Session 1 display sequence of all other users, and the dis-
play sequence of Session 2 and 3 of each user with the display sequence of
Session 2 and 3 of all other users. As shown in Table 1, through the first run of
the test, we considered all types of displays, including array-based and scene-
based. Then, we excluded scene-based displays to see if the results changed.
The exclusion was due to the possible complexity that displays with back-
ground images might have impacted performance of the users. As the results
show, there is a negligible improvement of 0.2% in the FAR when we excluded
background displays.
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Table 1: The number of cases the MWU-test passed -False Positives (S1: Ses-
sion 1, S2: Session 2, S3: Session 3).

Display Types S1-S1 S2-S2,S3 S3-S2,S3 Total Passed
All Types 70/870 137/1404 147/1566 3840 9.21%

Exclude BG 60/870 127/1404 160/1566 3840 9.03%

We further improve the FAR by incorporating eye-tracking data and different
configurations in Section 6.2.

5.2.3 Speed

The mean training time was 14.5 minutes. As noted in Section 4.3, our
data indicates that this could likely be reduced by half.

The login times are explained in Table 2. We show how different configu-
rations can substantially improve the login time in sections 6.1 and 6.2.

Table 2: Completion times for each session.

Training Session 1 Session 2 Session 3
Mean 14:49 01:08 04:46 05:53

Median 14:18 02:09 04:14 05:40
Std. Dev. 02:46 00:29 01:36 00:24

5.3 Using Eye Tracking Metrics

Here we analyze the performance if eye tracking metrics were used alone
for performance data.

5.3.1 Authentication Success Rate

Table 3 indicates the percentage of the subjects who showed significantly
different patterns for each of these eye movements for Ri versus Ni in each
verification/login session. We use the MWU test (at α = 0.05) for each of
these sessions. Our results confirm that the fixation and saccade counts were
fewer for the repeated displays Ri than the novel ones Ni for our entire study
population (on average). We also examined fixation duration, but found it was
not shorter for the repeated displays.

Table 3 shows that these eye movement measures show promise; however, its
authentication success rates alone are not better than using RT. Thus, we
investigate combining this information with RT in Section 5.4.
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Table 3: Percent of subjects whose eye movement measures are significantly
different for novel and repeated displays.

Session 1 Session 2 Session 3
Fixation count 79.31% 86.21% 72.41%
Saccade count 89.66% 75.86% 72.41%

5.3.2 False Positives

False positives were not studied here as the authentication success was
lower than for RT alone, so instead we study it in combination with RT in
Section 5.4.

5.4 Using RT and Eye Tracking Performance Data

Here we discuss performance using all three performance data metrics (RT,
saccade count, and fixation count). Recall the method for combining these
metrics is described in Section 3.4.

5.4.1 Authentication Success Rate

We consider login success when there is a significant difference in their
performance data for the displays in Ri versus Ni on at least 2/3 of the per-
formance data metrics (i.e., RT, fixation count, and saccade count). Using
this rule, the authentication success rate was improved for both Sessions 2
and 3 with 96.15% and 92.86% success rate for these sessions respectively.
The success rate improvements are comparably better than considering RT
solely (which were 88% and 86% for sessions 2 and 3 respectively).

5.4.2 False Positives and Speed

We combine our evaluation of false positives with changing the number of
displays for login in Section 6.2 to determine an optimal overall configuration.
We also discuss speed implications in Section 6.2 as well.

6 Simulating Different Configurations

Our feasibility study verification/login sessions used long sequences of novel
and repeated displays, for the purpose of ensuring we had sufficient data to an-
alyze. However, it may be possible that shorter display sequences are required
for an effective Tacit Secret design. To determine whether a more optimal con-
figuration of display sequences might exist, we simulate different configurations
of our system design (i.e., using different numbers of displays)
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For the purpose of these simulations, we sampled data randomly from each
user’s session 2 and 3 datasets. We are not sampling from session 1 as it is
the session with the best results and we wish to avoid biasing our results. For
sessions 2 and 3, while the measurements may be influenced by higher learning
effects from more repetitions, they may also be influenced by stronger fading
effects due to time delays. We note that there is not a remarkable performance
improvement of the users from session 2 to 3. Since we are sampling at random
from the data collected in sessions 2 and 3, we note that the sequences of novel
and repeated displays for every user differs in these simulations, than from the
ones actually provided during the testing sessions. In these simulations, we
also considered using fewer repeated displays, which would reduce the risk of
observation attacks.

6.1 Configurations Using RT

We show our results in a Receiving Operating Characteristics (ROC) graph,
to demonstrate the trade-off between True Positive Rate (TRP or Sensitivity)
and False Positive Rate (FPR or 1-Specificity). For Figure 5, we display the
configurations that had an authentication success rate over 70%. The closer
the points are to the northwest of the graph, the better performance the con-
figuration has. The graph shows the configuration with 25 repeated and 25
novel displays outperforms the other configurations with a TPR of 0.897 TPR
and 0.008 FPR. Given this 25-25 configuration, we could keep strong accuracy
and have a shorter session duration. The average login time for the 25-25 con-
figuration would be 2.5 minutes which is comparably shorter than the 50-50
configuration average login time (5 minutes).

6.2 Configurations Using RT and Eye-tracking Data

Here we investigate whether we can further reduce login time, using the
approach of Section 3.4 to incorporate eye-tracking measures, and altering the
configuration as in Section 6.1.

Figure 6 illustrates the performance as the configuration is varied. There
are 6 configurations, 25R−25N , 40R−40N , 10R−20N , 20R−40N , 20R−20N ,
and 30R − 30N which outperform the others. Since they have almost identi-
cal performance (96.6% TPR and 0.4% FPR), we select the one which has
the lowest number of displays and also fewer repeated displays to lower the
observation attack risk. Thus, the best overall configuration appears to be
10R − 20N , which contains 10 repeated and 20 novel displays. This configu-
ration’s login time would be at most 2 minutes and on average 1.5 minutes.

The results in Figure 6 show a notable improvement compared with the
results in which only RT was taken into account. In Section 6.1 we found the
configuration with 25R-25N had the best performance; however, our analysis in
this section revealed configurations with higher performance, with even fewer
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Fig. 5: ROC graph showing performance given different login configurations
when using RT alone. Configurations are described by the number of novel
(N) and repeated (R) displays they contain.

displays. The average login time for this configuration would be 1.5 minutes
which is comparably shorter than the 50-50 configuration average login time
(5 minutes).

7 Security Analysis

In this section, we first provide our threat model in Section 7.1 and then
analyze how our approach to Tacit Secrets would fare against five different
attack scenarios. These attacks include: (1) offline brute-force in Section 7.2,
(2) online guessing using population statistics in Section 7.3, (3) coercion at-
tacks in Section 7.4, (4) observation (shoulder-surfing) attacks in Section 7.5,
and (5) phishing attacks in Section 7.6. Our security analyses are performed
for both (1) RT performance data, and (2) RT and eye-tracking performance
data.

7.1 Threat Model

Our threat model is based on the assumption that an adversary wishes to
obtain the user’s Tacit Secret in order to either decrypt previously collected
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Fig. 6: ROC graph showing performance of different login configurations, when
using a combination of RT and eye-tracking measures. Configurations are de-
scribed by the number of novel (N) and repeated (R) displays they contain.

data and/or gain access to a high security system, room, or administration
task. We consider online, offline, coercion, observation, and phishing attacks.
Here we list the assumptions our analysis builds upon: (1) The attacker has
software that is capable of (i) detecting background scene change, (ii) detect-
ing display/context objects’ orientations, and (iii) responding with a chosen
true delay, (2) the attacker is able to collect data from the population on the
task in general (i.e., for both novel and repeated displays) to obtain response
time distributions, and (3) the attacker does not know what the display types
are (novel/ repeated) for the target user.

7.2 Offline Brute-Force Attack

To determine the efficacy of an offline brute-force attack, we must enumer-
ate the size of the key space for our approach. We can consider a random,
system-assigned Tacit Secret as set of size 12 (i.e., |Ki| = 12). Each element in
Ki could be any display in D, with equal probability as it is system-assigned.
To enumerate the key space, we must first determine |D|. Since each display
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is a 6×8 matrix, there are 48 possible positions on each display where objects
(distractors or targets) can be placed. Each display contains 16 objects; 15
distractors (‘L’) and 1 target (‘T’). First, the position of the target is chosen:

48C1. Then the position of each of the 15 distractors is chosen: 47C15. Thus,
|D| = 48× 47C15 = 245. Given that there are 12 displays to be chosen from D,
the total number of possible keys is: 245C12 ≈ 2510. Thus, a brute-force offline
attack is expected to succeed only after approximately 2509 guesses.

7.3 Online Attack Using Population Statistics

For an online attack to succeed, the attacker must correctly guess the type
of all displays presented in a login session (i.e., if they are novel or repeated).
If, as assumed in Section 7.1, the attacker knows the time distribution of
novel/repeated displays, he/she can submit a legitimate guess for each display,
and the attack success is determined by correctly guessing the type of each
display.

To calculate the probability of correctly guessing all the display types in a
session for user i, consider that there are |Ri| positions from the sequence of
|Ri| + |Ni| displays that could contain the repeated displays. Then there are

(|Ri|+|Ni|)C|Ri| possible positions for the repeated displays. If the attacker has
one attempt at guessing this particular sequence, since it changes on each login
attempt, the probability of a successful guess of the entire display sequence is
1/((|Ri|+|Ni|)C|Ri|).

Using RT. (50-50 Configuration). Here |Ri| = 50, |Ni| = 50, and
|Ri|+ |Ni| = 100. Thus, the probability of a successful online guess is 2−96.

Using RT. (25-25 Configuration).
We evaluate this configuration as we found it to outperform other config-

urations that only consider RT performance data (recall Section 6.1). Here
|Ri| = 25, |Ni| = 25, and |Ri|+ |Ni| = 50. Thus, the probability of a successful
online guess is 2−47. While this indicates this configuration is not as resis-
tant to attacks as the 50-50 configuration, it is still sufficient to be considered
resistant to online attacks [44].

Using RT and Eye-tracking Data. (10-20 Configuration).
We evaluate this configuration as we found it to outperform all other con-

figurations (recall Section 6.2). Here |Ri| = 10, |Ni| = 20, and |Ri|+ |Ni| = 30.
Thus, the probability of a successful online guess is 2−25. While this indicates
this configuration is not as resistant to attacks as the 50-50 or 25-25 configu-
rations, it is still sufficient to be considered resistant to online attacks [44].

7.4 Coercion Attack

Imagine a scenario whereby a motivated attacker threatens a legitimate
user with a weapon or using blackmail. The attacker can ask the victim to
hand over his/her key, or tailgate the user, e.g., through a physical access



20 Zeinab Joudaki et al.

control point or forcing the user to login while he/she is present in order
to take over the account after authentication is complete. Below we further
explain these attack scenarios.

7.4.1 Communicating the Secret

This describes when a victim is forced to hand over his/her secret key so
the attacker can masquerade as the user at a later time. Since our approach
to Tacit Secrets is based on implicit knowledge, even if the trainee is coerced
and willing to reveal the key, she/he is not able to do so as she does not
have explicit and conscious knowledge of the key. The implicit nature of the
acquired knowledge allows protection against such coercion attacks.

7.4.2 Tailgating

This describes when an attacker tailgates the user to the authentication
station, coerces the user to login to the system, and then follows them past the
authentication point. In this scenario, we have no evidence that our approach
will protect the user’s account, as the user may have no choice but to login
out of fear for their life. To protect against such an attack scenario, we suggest
using a type of panic password [20]. E.g., this could be a simple recognition
test from a set of items, whereby the user is trained on a decoy (e.g., an image)
to select from the set presented, in the event of this type of coercion. If no
coercion is taking place, another item can be selected instead. If the user selects
the decoy, the system can detect suspicious activity by a masquerader. It raises
an alert to the system of a potential attack in which case the system will not
expose the user’s real key. For such a system to work, it is important that the
user understands there is no way for the attacker to determine the decoy was
selected; thus, it is important for the system to behave as though the user had
logged in normally (yet with limited access to sensitive data and functionality).
We note that it is also conceivable that our approach might provide some
protection against coercion even in this scenario. Although it is not yet tested,
it is possible that a user might fail to do the task properly as their subconscious
system might be affected under duress (e.g., being stressed) [45]. Gauging
the stress level of users and how duress influences the measurements of our
approach is out of the scope of our feasibility study and is left as future work.

7.5 Observation Attack

Another type of attack can occur through an attacker’s observations. As-
suming that the training session is performed in a secure location, the attacker
attempts to pass the login test using obtained knowledge through observations
of single or multiple testing sessions. Given that he does not have any prior
knowledge, he tries to recover the user’s dataset through observation. So to
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have a probabilistic view of this threat, the following scenario should be con-
sidered. Each user has a learnt dataset Ki containing 12 displays. Through an
authentication session, a sequence of repeated displays Ri will be randomly
drawn from the Ki set. If a display is shown at least twice, an observer can
understand that it is a part of the user’s learnt dataset. To find how successful
an attacker might be, we need to know how many sessions are required for the
attacker to acquire the knowledge of all the learnt displays Ki for a user i. To
calculate this number we refer to the “double dixie cup problem” [46], which is
a well-known type of the “coupon collector’s problem”. Given that there are n
different types of coupons, the coupon collector problem finds the waiting time
for a coupon collector to collect all n coupons. Each coupon is equally likely
and would be randomly selected at each trial. The double dixie cup problem is
an extension to the coupon collector problem and it determines the expected
number of dixie cups which must be purchased in order to complete m sets of
n existing different dixie cups in time t. Using the following formula we can
calculate this number:

Em(n) = n ·
∫ ∞
0

[
1− (1− e−t

m−1∑
k=0

tk

k!
)n

]
dt.

Given n = 12 and m = 2, the expected number of displays required to
be exposed in order to show the entire set of user’s learnt displays would be
58.04. We discuss the implications for each configuration below.

Authentication based on RT. (50-50 Configuration). With a testing
session containing 50 repeated displays in Ri (the length of Ri is 50), the
attacker is expected to need to observe 2 login sessions in order to see all
learnt displays at least twice.

Authentication based on RT. (25-25 Configuration).
Given that each login session contains 25 repeated displays in Ri, the at-

tacker is expected to need to observe 3 login sessions in order to be able to
acquire the knowledge of the user’s key.

Authentication based on RT and eye-tracking data (10-20 Con-
figuration).

Given that each login session contains 10 repeated displays in Ri, we expect
the attacker needs to observe 6 login sessions in order to acquire knowledge of
the user’s key.

Discussion. There are different amendments to the experiment configura-
tion we can apply in order to decrease the chances of success of the observation
attack while keeping the same accuracy. By exposing fewer repeated displays
Ri, we increase the number of sessions the attacker needs to observe (e.g., for
10-20 configuration, it is 6 login sessions).

We can also increase the length of each user’s learnt key. By increasing this
number, we have more displays to select from and thus the attacker needs to
learn more displays in order to know the user’s whole set. This would result
in the user needing to learn more displays; however, since the CC effect can
be observed after the fourth block in training, we may be able to decrease the
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number of repetitions during the training session from 15. Another possibility
is to provide the user some new displays to be learnt during each login session.
Once user i learns the display configuration through a few testing sessions, the
display can be added to Ki (i.e., their key). Such a mechanism may allow us to
update the user’s key and prevent attackers from acquiring sufficient knowledge
during a series of observations. Finally, we note that if our approach to Tacit
Secrets is infrequently used (e.g., for password resets), then it may take a very
long time for an attacker to observe the required number of sessions.

7.6 Phishing Attack

For the purpose of this discussion, we assume a faster variation of our
Tacit Secrets approach (e.g., 10R-20N described in Section 6.2) is being used
in a web environment. For an attacker to launch a phishing attack, he/she
must create a phishing site that mimics the Tacit Secret login process. In
order to gain information about whether a given challenge display d is in user
i’s Ki, the phishing site would need to provide d as a challenge to user i,
record i’s performance data for d, and compare it to i’s performance data
for other displays to determine whether it has better performance. If d has
better performance than the majority of displays in the session, the attacker
can assume d ∈ Ki. Since there are 245 possible displays to challenge the
user with, and each login session should only contain 50 displays, we expect
it would take over 10 billion phishing attempts on the same target user i to
successfully recover i’s Tacit Secret.

7.7 Security Discussion

Overall, the results of our security analysis suggest that our approach to
Tacit Secrets has strong potential to offer security from various attacks: offline
and online guessing, certain types of coercion, observation attacks given a small
number of observations, and phishing. Our results also highlight how varying
the system configuration can result in even stronger security from observation
attacks, e.g., by increasing the number of learnt displays and also decreasing
how often they are revealed. Of most interest is our 10-20 configuration using
eye tracking data, which offers the best accuracy. Our analysis also shows that
10-20 is expected to require 6 observations for an advanced observation attack
to succeed, has sufficient security to protect against online guessing attacks,
and provides excellent security against offline and phishing attacks.

Due to the inherent features of our approach, the Tacit Secret is protected
against coercion attacks involving communication of the secret. However, if
the attacker forces the user to login to the system while she is present, the
user may feel they need to login to the system as usual. For such systems
where this threat is of concern, we suggest employing panic passwords as
discussed in Section 7.4.2. Finally, since our approach is based on fine grained
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performance metrics, it has the potential to naturally deteriorate under user
duress conditions; however, evaluating whether this is the case is left to future
work.

8 Limitations

As our feasibility study was performed in a laboratory environment, our
results may not describe how well the approach would work in a non-laboratory
setting, especially since the training task requires participant focus. Also, our
study participants are university students who may have improved focus than
the broader population. Further research is needed to study this approach to
Tacit Secrets in other populations and in other settings.

9 Discussion

Feasibility of Tacit Secrets. We found our approach has much better
performance than a previously proposed scheme for Tacit Secrets, SISL. The
authentication process in SISL is based on the users’ performance (the per-
centage of the correct responses and response time) on a learnt sequence versus
random ones. This data can be used to prevent the same coercion attacks as
our approach; however, only 71%, 47%, and 62% of participants could success-
fully authenticate using this method immediately, 1 week, and 2 weeks later
respectively. SISL’s first experiment aimed to confirm the existence of implicit
learning through an authentication session immediately after training; Their
second experiment had two groups of participants: the first group did the SISL
task one week after training. The second group did the SISL task two weeks
after training, where the length of the login session was doubled (from 5-6
minutes to 10-12 minutes) to see if this change could affect their performance.
For this second group of participants, 62% exhibited better performance on
the trained sequences. The improvement in the authentication success rate
(from 47% to 62%) was due to doubled length of the testing session for the
2-week delay group (from approx. 5-6 minutes to approx. 10-12 minutes).

Our results showed that our approach offers substantial improvements,
increasing success rates from 71% to 100% and 47% to 96%, immediately and
one week later respectively, reducing training times from 30-45 to 14.5 minutes
(and could be further reduced, according to Figure 3), and reducing the login
times from 6-12 minutes to approximately 1.5 minutes.

Expected Impact of Recommended Configuration
We explored different configurations of our approach in Section 6, finding

that the eye tracking data improved the login acceptance rates, and allowed
reduction of the number of displays in a login session to 30 displays (10 re-
peated and 20 novel). This 10-20 configuration is expected to have login times
of approximately 1.5 minutes. We also found it would offer protection against
offline attacks, online attacks, at least some forms of coercion attacks, obser-
vation attacks involving less than 6 sessions, and phishing attacks.
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Interference Between Multiple Systems. There is a very low proba-
bility for interference between the Tacit Secrets assigned and novel displays of
different systems using the same approach. This scenario would occur when
the novel displays (randomly generated by system A), happen to be part of
the user’s key for another system (e.g., system B). Consider that the possible
number of displays in our configurations is 245, and each system has 12 learnt
displays (randomly assigned). For the purpose of our discussion, we assume a
user has Tacit Secrets for 100 systems. Then the probability that in a login
session for user i on system A, a given novel display belongs to Ki on any of the

other 99 systems, is p = 12×(99)
245 . To compute the probability of interference

in any display in a given login session, we first compute the probability of no
interference using the binomial distribution’s probability mass function with
number of successes k = |Ni|, number of trials n = |Ni|, and the probability
of success (i.e., of no interference in a given trial) being 1− p. Then the prob-
ability of interference is one minus the probability of no interference. Then
the probability of interference under these assumptions is as follows for the
configurations we consider: 10R-20N = 6.75×10−10, 25R-25N = 8.44×10−10,
and 50R-50N = 1.69× 10−09.

Authentication Framework Summary We end our discussion with an
overview of the usability, deployability, and security properties, using a mod-
ified version of the web authentication framework of Bonneau et al. [47]. We
begin by highlighting that this framework is intended to evaluate web authen-
tication systems, which is not the high-security environment we expect would
find our approach of interest. Nonetheless, it provides a reasonable overview
after we added additional columns to capture the coercion attacks we outline
in Section 7.4. Our evaluation also includes the two most relevant implicit-
memory based schemes, SISL [17] and MooneyAuth [19], to facilitate compar-
ison with our Tacit Secrets approach. The results are provided in Table 4.

In terms of usability measures, our approach outperforms passwords in
some ways. It is Memorywise-Effortless as users do not need to explicitly
memorize their assigned Tacit Secrets. We note however that it is possible
that implicitly learnt information imposes a cognitive load we are not aware
of. Gauging such cognitive loads is out of the scope of our work. Since we
have theoretically shown our approach has extremely low interference if it is
used for multiple accounts (please see Section 9), we rate it as Scalable-for-
Users. Our approach is Quasi-Physically-Effortless as users only need to hit
the arrow keys after they find the target; this also implies it could be easily
integrated with other assistive technologies such as BCIs. The simplicity of
our approach makes it Easy-to-Learn as people who do not know how to read
can perform the task. The length of the training and login phase means that it
is not Efficient-to-Use. Our authentication success rates were very high, thus
we believe it has Infrequent Errors. The approach has Quasi-Easy-Recovery-
from-Loss, as if a user needs to reset their assigned Tacit Secret, they need to
go through the training phase to obtain a new one.

We rated our approach as Quasi-Accessible as CC has been found to re-
main intact in several neurological and mental disorders, and can be used
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with people who cannot read, making it more accessible; however, visually im-
paired users are not able to use this approach. If our approach is used without
eye tracking data, it has Negligible-Cost-per-User ; however, incorporating eye
tracking data applies cost on either the service providers or the users. It is
not Server-Compatible as its implementation is quite different than regular
passwords; however, it is Browser-Compatible as users do not have to change
their client to support the scheme. It is clear that our approach is not Mature.
Anyone can implement or use this approach; thus, it is Non-Proprietary.

Although a simple physical observation (shoulder-surfing) attack would be
difficult, we consider Resilient-to-Physical-Observation given an attacker who
can record the full session and analyze it carefully later on. When the 10R-20N
configuration is used (as recommended for RT and eye tracking performance
metrics), we expect 6 sessions need to be observed in order to reveal the user’s
Tacit Secret. Without eye tracking data, the recommended configuration is
25R-25N, and this number decreases to 2 sessions. Although we do not rate the
system as even Quasi-Resilient-to-Physical-Observation, we shade it green as it
still performs better than passwords. Our approach is not Resilient-to-Internal-
Observation as malware can record multiple interactions with the system and
eventually recover the Tacit Secret as in the case of a physical observation
(recording) attack; however, it still performs better than passwords as more
than one observation is required.

Due to the large key space of our approach, it is Resilient-to-Unthrottled-
Guessing. Under the configurations we analyzed in this paper (i.e., 10R-20N,
25R-25N, and 50R-50N), it is also Resilient-to-Throttled-Guessing as discussed
in Section 7.3. It is also Resilient-to-Theft as the authentication information
is in the user’s implicit memory. It is also Resilient-to-Phishing, as discussed
in Section 7.6. Our approach has No-Trusted-Third-Party. Our approach also
offers the benefit of Requiring-Explicit-Consent since the authentication relies
on a conscious consented user.

Since our approach assigns random Tacit Secrets to users, we rate it as
Resilient-to-Targeted-Impersonation and Resilient-to-Leaks-from-Other-Verif-
iers. Our approach is also Unlinkable since each system will assign a Tacit
Secret randomly; we rate this as better than passwords, as in cases where a user
reuses their password, their accounts could be linked with some probability.

We also add two new columns to the framework: Resilient-to-Coerced-
Tailgating and Resilient-to-Coerced-Communication to reflect the coercion at-
tacks discussed in Section 7.4. Our approach is Resilient-to-Coerced-Communi-
cation as the system-assigned Tacit Secret is implicitly learnt. It is not known
to be Resilient-to-Coerced-Tailgating ; however, it is possible that if the user
is under the stress of coercion it might impact their performance and deny
access; thus, it has the potential to offer this benefit.
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Table 4: Comparing our approach to Tacit Secrets vs. passwords and other
IL-based schemes using the UDS framework[47]. Our Tacit Secrets approach
performs better than all in terms of usability and security. All IL-based schemes
perform similarly in terms of deployability.
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Web Passwords

Tacit Secrets

SISL [17]

MoonyAuth [19]

– offers the benefit, – almost offers the benefit, no icon – does not offer the

benefit, – potential to have the benefit , – potential to almost offer the benefit,

– better than passwords, – worse than passwords

10 Future Work

We conclude the paper by discussing directions for future research. The
design of our feasibility study is based upon related work on the contextual
cueing paradigm. To be consistent with those studies, for the training session,
we considered 15 blocks containing 16 trials. However, we found the learning
effect is detectable after the fourth block, and appears to stabilize after the
seventh block. This implies that we may be able to substantially reduce the
training session time. In future work, it would be worth investigating how
much the training session can be shortened while the learning is still effective
and durable.

Another consideration is whether a fading effects exist for the implicitly
learnt Tacit Secret. Based on our analysis, the difference between the average
RT for novel and repeated displays appears to have slightly decreased over
the course of the experiment. This might imply that there is some fading of
the CC effect over time. If such a fading effect is found to exist, it could be
countered by a periodic training session, seamlessly inserted during regular
authentication sessions, to make sure the displays used for authentication are
continuously renewed.
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Since the knowledge acquired through CC has been found to last for delays
of at least six weeks [48,33], it would be interesting to determine whether it
exists for longer duration to evaluate its suitability for fallback authentication.

We are also interested in exploring other enhancements such as how the
uniqueness of the movement of the eye as a behavioral biometric can result in
a shorter login, yet maintain accurate identification of users.

Our work suggests that directly using implicitly learnt secrets in authenti-
cation may be a viable approach for some contexts. Future work also includes
exploring whether implicitly learnt information could be used indirectly to
facilitate memorization of traditional authentication secrets.
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