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ABSTRACT
Variational Autoencoders (VAEs) have shown to be effective for
recommender systemswith implicit feedback (e.g., browsing history,
purchasing patterns, etc.). However, a little attention is given to
ensembles of VAEs, that can learn user and item representations
jointly. We introduce Joint Variational Autoencoder (JoVA), an
ensemble of two VAEs, which jointly learns both user and item
representations to predict user preferences. This design allows JoVA
to capture user-user and item-item correlations simultaneously. We
also introduce JoVA-Hinge, a JoVA’s extension with a hinge-based
pairwise loss function, to further specialize it in recommendation
with implicit feedback. Our extensive experiments on four real-
world datasets demonstrate that JoVA-Hinge outperforms a broad
set of state-of-the-art methods under a variety of commonly-used
metrics. Our empirical results also illustrate the effectiveness of
JoVA-Hinge for handling users with limited training data.
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• Information systems → Collaborative filtering; Learning
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1 INTRODUCTION
The information overload and abundance of choices on the Web
have made recommendation systems indispensable in facilitating
user decision-making. Recommender systems provide personalized
user experience by filtering relevant items (e.g., books, music, or
movies) or information (e.g., news). Many efforts have been devoted
to developing effective recommender systems [1, 19].
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Collaborative filtering (CF)—a well-recognized approach in rec-
ommender systems—is based on the idea that users with similar
revealed preferences are likely to have similar preferences in the
future [19]. User preferences in CF techniques are in the form of
either explicit feedback (e.g., ratings, reviews, etc.) or implicit feed-
back (e.g., browsing history, purchasing history, search patterns,
etc.). While explicit feedback is more informative than its implicit
alternative, it imposes more cognitive burden on users through
elicitation, is subject to noisy self-reporting [2], and suffers from
interpersonal comparison or calibration issues [3]. In contrast, im-
plicit feedback naturally originates from user behavior when an
interaction with an item is a signal of interest in the item.

The implicit feedback has made collaborative filtering more
intriguing at the cost of some practical challenges. The implicit
feedback lacks negative examples, as the absence of a user-item
interaction is not necessarily indicative of user disinterest (e.g., the
user is unaware of the item). Also, the user-item interaction data
for implicit feedback is large, yet sparse. It is even more sparse than
explicit feedback data, since the unobserved user-item interactions
are a mixture of both missing values and real negative feedback.
Many attempts have been made to address these challenges by
deep learning [24]. Multilayer perceptron networks were arguably
the first class of neural networks successfully applied for collabo-
rative filtering [6, 9]. Recent interest is in deploying the variants
of autoencoders, such as classical [25], denoising [21], and vari-
ational [14, 15]. However, these solutions either do not capture
uncertainty of the latent representations [21, 25], or solely focus
on latent representation of users [14, 15].

We present the joint variational autoencoder (JoVA) model, an en-
semble of two variational autoencoders (VAEs), that jointly learns
both user and item representations under uncertainty, and then
collectively predicts user preferences. This design enables JoVA to
encapsulate user-user and item-item correlations simultaneously.
We also introduce JoVA-Hinge, a variant of JoVA, which extends the
JoVA’s objective function with a pairwise ranking loss, to addition-
ally specialize it for top-k recommendation with implicit feedback.
Through extensive experiments over four real-world datasets, we
show the accuracy improvements of our proposed solutions over a
variety of state-of-the-art methods. Our JoVA-Hinge significantly
outperforms other methods in the sparse datasets (up to 34% accu-
racy improvement). Our extensive ablation study on JoVA-Hinge
confirms that its success originates from all of its integral compo-
nents (i.e., ensemble of VAEs and hinge loss).

2 RECOMMENDATION AND IMPLICIT DATA
We assume that a set of 𝑛 users 𝑈 can interact with the set of𝑚
items 𝐼 (e.g., users click ads, purchase products, watch movies, or
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listen to musics). We consider user-item interactions are binary (e.g.,
a user watched a specific movie or not), and represent them with
the user implicit feedback matrix R ∈ {0, 1}𝑚×𝑛 , where R𝑢𝑖 = 1,
if the interaction of a user 𝑢 with an item 𝑖 is observed. As each
column (or row) of the matrix corresponds to a specific item (or
user), R𝑢 and R𝑇

𝑖
denote the user 𝑢’s and item 𝑖’s interaction vector,

respectively. We consider that user 𝑢 has interacted with items
𝐼+𝑢 = {𝑖 ∈ 𝐼 | R𝑢𝑖 = 1} and has not interacted with 𝐼−𝑢 = 𝐼 \ 𝐼+𝑢 .

Our goal in top-k recommendation is to suggest 𝑘 most preferred
(or likely) items to the user 𝑢 from 𝐼−𝑢 . We predict the likelihood of
interaction between the user𝑢 and 𝐼−𝑢 , and then select a rank-list of
𝑘 items with the highest prediction score to recommend to the user
𝑢. Our learning task is to find a scoring (or likelihood) function 𝑓 that
predicts an interaction score 𝑟𝑢𝑖 for each user 𝑢 and an unobserved
item 𝑖 ∈ 𝐼−𝑢 . If 𝑟𝑢𝑖 ∈ [0, 1], it can be interpreted as the likelihood of
user 𝑢’s interaction with item 𝑖 . The function 𝑓 is formulated as 𝑟𝑢𝑖
= 𝑓 (𝑢, 𝑖 |𝜽 ), where 𝜽 denotes the model parameters.

Most of model-based CF methods [19] differentiate from each
other on the scoring function 𝑓 formulation or the objective func-
tions used for parameter learning. Some notable examples for mod-
eling the function 𝑓 are deep networks [24] and matrix factorization
[13]. The objective functions fall into two categories. Pointwise loss
[9, 11], by assuming an unobserved user-item interaction as a nega-
tive example, minimizes the error between predicted score 𝑟𝑢𝑖 and
its actual value 𝑟𝑢𝑖 . Pairwise loss [8, 17] directly optimizes the rank-
ing of the user-item interaction while assuming that users prefer
observed items to unobserved items.
RelatedWork.Many CF methods have been developed for recom-
mendation with implicit feedback [10, 11]. Deep learning has been
promising [24] by capturing more complex user-item interactions
(e.g., [6, 8, 9]). Of the most relevant to our work are recommender
systems built based on autoencoders. Collaborative deep ranking
(CDR) [23] jointly implements representation learning and collabo-
rative ranking by employing stacked denoising autoencoders. Joint
collaborative autoencoder (JCA) [25] deploys two separate classical
autoencoders jointly optimized only by a single hinge loss func-
tion. Mult-VAE [15] and its variant RecVAE [18] are collaborative
filtering models based on just one variational autoencoder. Our pro-
posed work differentiate from both JCA and Mult-VAE with regards
to both architecture and loss function. While JCA optimizes two
classical autoencoders, it does not capture the uncertainty of latent
representations. Mult-VAE models this uncertainty with just one
variational autoencoder. Putting their strengths together, we opti-
mize two separate variational autoencoders by our proposed loss
function, which well tunes them for dealing with implicit feedback.

3 JOINT VARIATIONAL AUTONECODER
We describe variational autonecoder and detail how Joint Varia-
tional Autoencoder (JoVA) extends its architecture and loss function.
Variational Autoencoder. Our model uses the variational autoen-
coder (VAE) [7] as a building block. VAE, similar to classical autoen-
coders, consists of encoder and decoder. The encoder first encodes
the inputs to latent representations, and then the decoder recon-
structs the original inputs from latent representations. The VAE
differentiates from classical autoencoders by encoding an input as a
distribution over latent representations (rather than a single point).

The encoder network of VAE encodes the input x to a d-dimensio-
nal latent representation z, with a prior distribution 𝑝 (z). One can
view the encoder as the posterior distribution 𝑝𝜙𝜙𝜙 (z|x) parametrized
by 𝜙𝜙𝜙 . As this posterior distribution is intractable, it is commonly
approximated by a variational distribution [4]:

𝑞𝜙𝜙𝜙 (z|x) = N(𝜇𝜙𝜙𝜙 (x), 𝜎2𝜙𝜙𝜙 (x)I), (1)

where two multivariate functions 𝜇𝜙𝜙𝜙 (x) and 𝜎𝜙𝜙𝜙 (x) map the input
x to the mean and standard deviation vectors. In VAE, 𝜇𝜙𝜙𝜙 (x) and
𝜎𝜙𝜙𝜙 (x) are formulated by the inference network 𝑓𝜙𝜙𝜙 (x) = [𝜇𝜙𝜙𝜙 (x), 𝜎𝜙𝜙𝜙 (x)].

The decoder network 𝑝𝜓𝜓𝜓 (x|z), also known as a generative net-
work, takes z and outputs the probability distribution over (recon-
structed) input data x. Putting together the encoder and decoder
networks, one can lower bound the log-likelihood of the input x by

log 𝑝 (x) ≥ 𝐸𝑞𝜙𝜙𝜙 (z |x)
[
log𝑝𝜓𝜓𝜓 (x|z)

]
− KL(𝑞𝜙𝜙𝜙 (z|x) | | 𝑝 (z)), (2)

where KL is Kullback-Leibler distance measuring the difference
between the distribution 𝑞𝜙𝜙𝜙 (z|x) and the prior distribution 𝑝 (z).
This lower bound, known as evidence lower bound (ELBO), is maxi-
mized for learning the parameters of encoder and decoder,𝜙𝜙𝜙 and𝜓𝜓𝜓 ,
respectively. Equivalently, for learning VAE parameters, one can
minimize the negation of the ELBO as a loss function (see Eq. 3) by
stochastic gradient decent with the reparameterization trick [7].

𝐿VAE (x|𝜃𝜃𝜃, 𝛼) = −𝐸𝑞𝜙𝜙𝜙 (z |x) [log𝑝𝜓𝜓𝜓 (x|z)] + 𝛼KL(𝑞𝜙𝜙𝜙 (z|x) | | 𝑝 (z)), (3)

where 𝜃𝜃𝜃 = [𝜓𝜓𝜓,𝜙𝜙𝜙]. This loss function can be viewed as a linear
combination of reconstruction loss and KL divergence, which serves
as a regularization term. Recent research [15, 18] has introduced
the regularization hyperparameter 𝛼 for controlling the trade-off
between regularization term (i.e., KL loss) and reconstruction loss.

As our input data x is a binary vector (i.e., implicit feedback),
we consider logistic likelihood for the output of the VAE decoder.
Defining 𝑓𝜓𝜓𝜓 (z) = [𝑜𝑖 ] as the output of generative network, the
logistic log-likelihood for input x is

log𝑝𝜓𝜓𝜓 (x|z) =
∑
𝑖

𝑥𝑖 log𝜎 (𝑜𝑖 ) + (1 − 𝑥𝑖 ) log(1 − 𝜎 (𝑜𝑖 )). (4)

Here, 𝜎 (𝑥) = 1/(1 + exp(−𝑥)) is the logistic function. This logistic
likelihood renders the reconstruction loss to the cross-entropy loss.
JoVA Model. Our model consists of two separate variational au-
toencoders: the user VAE and the item VAE (see Figure 1). Given
the implicit feedback matrix R, the user VAE reconstructs the ma-
trix row-by-row (i.e., reconstructs user vector R𝑢 ), whereas the
item VAE reconstructs it column-by-column (i.e., reconstructs item
vector R𝑇

𝑖
). These two VAEs independently and simultaneously

complete the implicit feedback matrix. The final output is the av-
erage of two predicted implicit matrices: R̂ = 1

2 (R̂
𝑢𝑠𝑒𝑟 + R̂𝑖𝑡𝑒𝑚),

where R̂𝑢𝑠𝑒𝑟 and R̂𝑖𝑡𝑒𝑚 are implicit matrices predicted (or com-
pleted) by the user VAE and the item VAE, respectively. We note
that R̂ ∈ [0, 1]𝑚×𝑛 , where each 𝑟𝑢𝑖 represents the predicted likeli-
hood that user 𝑢 interacts with item 𝑖 . This natural probabilistic
interpretation originates from our choice of logistic likelihood for
the output of VAEs (see Eq. 4). The parameters of the user VAE and
the item VAE are learned with a joint loss function (see below).

We carefully designed JoVA model to capture both user-user and
item-item correlations. The item VAE embeds similar items close
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Figure 1: Illustration of the JoVAmodel. User and itemVAEs
recover the input matrix independently. The final output is
the average of these two reconstructed matrices.

to each other in its latent representations to preserve their correla-
tions, while the user VAE does the same for similar users. The joint
optimization of these two VAEs helps their fine-tune calibration,
so that they can complement each other in their predictions. The
item and user VAEs together can learn complementary information
from user-item interactions beyond what each could separately
learn. This richer learning is a valuable asset for sparse datasets (as
confirmed by our experiments in Section 4).

Similar to ensemble learning, JoVA aggregates the predictions
of user and item VAEs into the final prediction. The aggregation
in JoVA is with unweighted averaging, shown to be a reliable ag-
gregation method in the ensemble of deep learning models [12].
One can use the weighed averaging at the cost of tuning more
hyper-parameters, but with the promise of increased accuracy.
Loss functions. We consider two variants of loss functions for
JoVA. One naturally arises from the combination of two user and
item variational autoencoders:

𝐿JoVA (R|𝜃𝜃𝜃, 𝛼) =
∑
𝑢∈𝑈

𝐿VAE (R𝑢 |𝜃𝜃𝜃𝑈 , 𝛼) +
∑
𝑖∈𝐼

𝐿VAE (R𝑇𝑖 |𝜃𝜃𝜃 𝐼 , 𝛼) (5)

Here, 𝜃𝜃𝜃𝑈 and 𝜃𝜃𝜃 𝐼 represent the model parameters of user and item
VAEs respectively, and 𝐿VAE is computed by Eq. 3 with the logistic
likelihood of Eq. 4. To further specialize JoVA model for the top-k
recommendation with implicit feedback, we incorporate a pairwise
ranking loss in its joint loss function. Specifically, we introduce the
JoVA-Hinge (JoVA-H) loss function:

𝐿JoVA−H (R|𝜃𝜃𝜃, 𝛼, 𝛽, 𝜆) = 𝐿JoVA (R|𝜃𝜃𝜃, 𝛼) + 𝛽𝐿H (R|𝜃𝜃𝜃, 𝜆), (6)

where 𝐿H (R|𝜃𝜃𝜃, 𝜆) =
∑
𝑢∈𝑈

∑
𝑖∈𝐼+𝑢

∑
𝑗 ∈𝐼−𝑢 max(0, 𝑟𝑢 𝑗 − 𝑟𝑢𝑖 + 𝜆) is a

hinge loss function, widely and successfully used as a pairwise rank-
ing loss [20, 22, 25] for recommendation with implicit feedback.
Here, 𝑟𝑢𝑖 is the predicted interaction score (or likelihood) of a user
𝑢 for an item 𝑖 , and 𝜆 is the margin hyperparameter.

The hinge loss is built upon the assumption that a user 𝑢 prefers
his interacted item 𝑖 ∈ 𝐼+𝑢 over an uninteracted item (or negative
example) 𝑗 ∈ 𝐼−𝑢 with the margin of at least 𝜆. We have introduced
the hyperparameter 𝛽 for controlling the influence of hinge loss
to the JoVA’s objective function. The JoVA-Hinge loss function in
Eq. 6, by combining pointwise losses of variational autoencoders
and the hinge pairwise loss, extends the standard approaches of
deploying either pointwise or pairwise loss functions.

Table 1: The summary statistics of datasets.

Dataset #User #Item #Interaction Sparsity

MovieLens 6,027 3,062 574,026 96.89%
Yelp 12,705 9,245 318,314 99.73%
Pinterest 55,187 9,911 1,500,806 99.73%
Netflix 70,000 17,769 8,623,831 99.31%

4 EXPERIMENTS
Our empirical experiments assess the effectiveness of our proposed
methods against a set of state-of-the-art methods.1

Evaluation Datasets.We report results obtained on four datasets:
MovieLens-1M (ML1M)2, Pinterest3, Yelp4, and Netflix.5 Pinterest
is a dataset with implicit feedback. Following the previous work [9],
we kept only users with at least 20 interactions (pins). ML1M, Yelp,
and Netflix originally include five-star ratings. As with [15, 16, 25],
we converted the user-item rating 𝑅𝑢𝑖 to 1, if 𝑅𝑢𝑖 ≥ 4 and to 0
otherwise. For Netflix, we have randomly selected 70,000 users with
all their user-item interactions from the original dataset. Table 1
provides the summary statistics of our datasets after pre-processing.
For each dataset, the user-item interactions are randomly split into
80% training, 10% validation, and 10% testing datasets.
Evaluation Metrics. We utilize four commonly-used metrics to
assess the quality of predicted ranked list for each user 𝑢: Preci-
sion@k (P@k) ; Recall@k (R@k)F1-score@k (F1@k) ; and NDCG@k.
We report the average of these metrics (over testing users).
Baselines.We compare our methods against state-of-the-art meth-
ods: BPR [17] optimizes a matrix factorization (MF) model with a
pair-wise ranking loss. CDAE [21] uses denoising auto-encoder to
user-interaction predictions. Mult-VAE [15] uses only a single VAE
with multinomial distribution for the output of the decoder. NCF
[9] learns user-item interaction by combining MF and multi-layer
perceptrons. JCA [25] deploys two classical autoencoders. FAWMF
[5] is an adaptive weighted matrix factorization method based on
a VAE. For all these baselines, we have used the implementations
and optimal parameter settings reported by the original papers.
Experimental Setup. The models are trained by Adam with a
learning rate of 0.003. For our models, as with [25], we decomposed
the training matrix into 1500x1500 mini-batch matrices. The hy-
perparameters are set by the grid search on the validation sets:
𝜆 = 0.15, 𝛼 = 0.01, and 𝛽 = 0.001 (except for Yelp with 𝛽 = 0.01).
Similar to [25], we randomly sampled one negative instance per a
positive instance in each epoch. For each encoder and decoder, we
had two hidden layers each with 320 dimensions and tanh activa-
tion functions, while the sigmoid activation function was used for
the output layers. We set the dimension of the latent space 𝑑 to 80.
Exp-1: Acuracy Comparison. We compare the accuracy of the
top-k recommendation of our models and baselines with various
𝑘 ∈ {1, 5, 10}. Table 2 reports F1-Score and NDCG for all datasets
and methods. The results for precision and recall were qualitatively
similar. Our JoVA-Hinge outperforms others for F1 measure on

1Source code available at https://github.com/bahareAskari/JoVA-Hinge.git
2http://files.grouplens.org/datasets/movielens/ml-1m.zip.
3https://sites.google.com/site/xueatalphabeta/academic-projects
4https://www.yelp.com/dataset/challenge.
5https://www.kaggle.com/netflix-inc/netflix-prize-data
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Table 2: Acuracy comparions of the baselines and JoVA-Hinge. The best and second best are in purple and grey respectively.

ML1M Yelp Pinterest Netflix

F1-score NDCG F1-score NDCG F1-score NDCG F1-score NDCG
@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

BPR .041 .129 .170 .284 .255 .243 .007 .018 .022 .017 .022 .030 .012 .029 .033 .033 .031 .041 .001 .003 .005 .009 .010 .010
NCF .051 .149 .188 .296 .273 .271 .015 .033 .035 .037 .039 .050 .012 .031 .038 .038 .035 .048 .001 .006 .008 .013 .012 .013
CDAE .052 .147 .187 .343 .290 .273 .016 .032 .036 .038 .039 .047 .015 .035 .040 .042 .039 .051 .001 .005 .007 .011 .011 .013
Mult-VAE .052 .142 .180 .343 .289 .270 .015 .032 .034 .035 .038 .047 .015 .035 .040 .047 .04 .050 .001 .004 .01 .011 .011 .011
FAWMF .060 .166 .207 .378 .318 .299 .015 .029 .031 .036 .036 .043 .013 .031 .036 .042 .036 .045 .002 .006 .009 .019 .017 .017
JCA .060 .163 .208 .370 .313 .298 .016 .035 .038 .041 .044 .054 .015 .038 .046 .045 .042 .056 .002 .007 .011 .017 .016 .017
JoVA-H .062 .167 .212 .372 .314 .301 .020 .039 .040 .045 .048 .058 .020 .047 .054 .060 .053 .068 .003 .008 .012 .020 .019 .019

% improve 3.333 0.600 1.923 -1.58 -1.25 0.668 25 11.43 5.26 9.76 9.10 7.41 33.33 23.68 17.39 33.33 26.19 21.43 50 14.29 9.10 5.26 11.76 11.76

0.16 

0.14 

0.12 

an 

.-1 0.10 
LL. 

0.08 

0.06 

Movielens 

..---__ _...--
--

•----• ----

/ 

/ 
/ 

,',' 
---Ir 

r--
.·········•.. 

/ •...

,.,,., 
,,,. 

,,,. 
,,,. ,,,.

.,

/ 
.......

.•.....
..... 

_ _.,__, 

.... •··· •... • ·  

••• .. 

,,
,,
,, 

... ·····
··•

·· 

i� .... ·
·····

*· * 
···•··"

JoVA-Hinge 

JCA 

FAWMF 

Mult-VAE 
*. 

<10 <15 <20 <25 <30 <35 <40 <45 <50 

# positive examples in training 

0.20 

0.18 

an 0.16 
@) 
C, 
u 

Q 
0.14 

z 

0.12 

0.10 

Movielens 

/ 

/ 

·--
/ -

-...

,,�----,/ .... ···· ..
;

; 
.•· 

; . •----*✓ 
•• •

• 

/
/

/ 

...
........

.

. ··· 

..-

�/ 4
,,

/
.. 

•

···
··

•····
····

·
JoVA-Hinge 

;;; ··•·
· --+-, JCA 

.,,/ 
.. ··

···•······
· • FAWMF

•··· ••♦
♦ 

...... ., Mult-VAE
······•·

<10 <15 <20 <25 <30 <35 <40 <45 <50 
# positive examples in training

(a) F1-Score@5 (b) NDCG@5

Figure 2: The avg. accuracy of userswith the varyingnumber
of training data, MovieLens.

all datasets and various k. Compared with the best baseline, F1-
score@k is improved by up to 3.33% in ML1M, 25% in Yelp, 33.33%
in Pinterest, and 50% in Netflix. For NDCG, JoVA-Hinge also outper-
forms others significantly in three datasets of Yelp, Pinterest, and
Netflix. In Yelp, the mimimum improvement is 7.41% (for 𝑘 = 10)
and the maximum improvement is 9.76% (for 𝑘 = 1). In Netflix,
the mimimum improvement is 5.26% (for 𝑘 = 1) and the maximum
improvement is 11.76% (for 𝑘 = 5). The JoVA-Hinge has even higher
improvement for Pinterest with the mimimum of 21.72% (for 𝑘 = 10)
and the maximum of 33.33% (for 𝑘 = 1). Cross-examination of Ta-
bles 1 and 2 suggest that our JoVA-H model significantly improves
the accuracy of the state-of-the-art methods in terms of both F1
and NDCG for sparser datasets (i.e., Yelp, Pinterest, and Netflix).
Our results also suggest that JoVA-H offer more improvement for
smaller 𝑘 , which is of special practical interest for reducing cogni-
tive burden on users, when the recommendation slate is small.
Exp-2: Users with Limited Data.We aim to understand how the
prediction accuracy changes for users with a different number of
user-item interactions (i.e., positive examples). For the previous
experiments, rather than computing the average accuracy over
all users, we compute the average accuracy over users with at
most 𝐿 user-item interactions in training data (while increasing 𝐿).
This setting allows us to study how more availability of user-item
interactions affect the accuracy of recommendation. Fig. 2 shows
the performance of the top four methods of previous experiments
when 𝐿 increases. JoVA-Hinge outperforms other methods not only
for users with the low number of user-item interactions (i.e., cold-
start users), but also for well-established users. This suggests that
the success of JoVA-Hinge is not limited to a specific class of users.
Exp-3: Ablation Study.Our JoVA-Hinge encompass three integral
components of User VAE, Item VAE, and Hinge loss. To understand
the extent of which each component has contributed in the success

Table 3: Ablation study of JoVA-Hinge. The purple and grey
shows the best and second best results, respectively.

ML1M Yelp Pinterest
F1@1 NDCG@1 F1@1 NDCG@1 F1@1 NDCG@1

User VAE .0510 .3191 .0150 .0352 .0168 .0508
User VAE-H .0486 .3043 .0154 .0344 .0127 .0383
Item VAE .0555 .3423 .0156 .0352 .0178 .0538
Item VAE-H .0573 .3479 .0181 .0407 .0200 .0597
JoVA .0605 .3730 .0180 .0433 .0189 .0571
JoVA-H .0624 .3718 .0201 .0449 .0200 .0604

F1@5 NDCG@5 F1@5 NDCG@5 F1@5 NDCG@5
User VAE .1379 .2683 .0328 .0397 .0430 .0477
User VAE-H .1360 .2596 .0323 .0388 .0330 .0364
Item VAE .1556 .2933 .0308 .0376 .0435 .0489
Item VAE-H .1558 .2932 .0362 .0442 .0469 .0520
JoVA .1657 .3135 .0360 .0449 .0461 .0516
JoVA-H .1665 .3143 .0391 .0483 .0471 .0532

F1@10 NDCG@10 F1@10 NDCG@10 F1@10 NDCG@10
User VAE .1750 .254 .0365 .0495 .0512 .0625
User VAE-H .1728 .2482 .0346 .0474 .0401 .0486
Item VAE .1980 .2816 .0340 .0472 .0498 .0621
Item VAE-H .1984 .2816 .0385 .0540 .0538 .0663
JoVA .2092 .2990 .0395 .0553 .0538 .0666
JoVA-H .2115 .3013 .0401 .0581 .0542 .0678

of JoVA-Hinge, we conduct an ablation study on JoVA-Hinge, by
removing some of its components and evaluating the resulting
models. Table 3 shows the results of our ablation studies. We notice
that JoVA always outperforms both User VAE and Item VAE (for
all datasets and metrics), suggesting that the ensemble of VAEs is
more effective than individual VAEs. Hinge loss always improves
Item VAE, surprisingly downgrades User VAE, and improves JoVA
(except for NDCG@1 on MovieLens). This finding suggests that (i)
hinge loss not necessarily can improve the performance of each
individual VAE; however, (ii) it usually improves the performance
of ensemble of VAEs.

5 CONCLUDING REMARKS
We have introduced joint variational autoencoder (JoVA) for top-k
recommendation with implicit feedback and its variant JoVA-Hinge.
Our empirical experiments on four real-world datasets show that
JoVA-Hinge significantly advances the recommendation accuracy
compared to state-of-the-art methods, under various evaluation
metrics. In future work, we plan to explore extending JoVA-Hinge to
incorporate user and item features (e.g., descriptions, demographics,
etc.), side information (e.g., social networks), context (e.g., time,
location, etc.), or non-stationary user preferences.
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