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Abstract: Ant programming has been proposed as an alternative to Genetic Programming (GP) for the automated pro-

duction of computer programs. Generalized Ant Programming (GAP) – an automated programming technique

derived from principles of swarm intelligence – has shown promise in solving symbolic regression and other

hard problems. Enhanced Generalized Ant Programming (EGAP) has improved upon the performance of

GAP; however, a comparison with GP has not been performed. This paper compares EGAP and GP on 3

well-known tasks: Quartic symbolic regression, multiplexer and an ant trail problem. When comparing EGAP

and GP, GP is found to be statistically superior to EGAP. An analysis of the evolving program populations

shows that EGAP suffers from premature diversity loss.

1 INTRODUCTION

Automatic programming is an active research area

that has been stimulated by the Genetic Programming

(GP) technique. In automatic programming, the goal

of the desired program is first specified; then, based

upon this goal, programs are generated according to

an algorithm and tested to demonstrate to what ex-

tent they satisfy the desired goal. Genetic program-

ming (GP) was proposed by Koza (Koza, 1992; Koza,

1994; Koza et al., 1999). GP utilizes an idea similar to

that of a genetic algorithm (GA) but with representa-

tional and operator differences. GP represents genes

in a tree structure as opposed to an array of numbers

typically used in a GA. Miller and Thomson (Miller

and Thomson, 2000) introduced a form of GP called

Cartesian Genetic Programming, which uses directed

graphs to represent programs rather than trees.

While search algorithms inspired by evolution

have demonstrated considerable utility, other learn-

ing models are attracting increasing interest. One

model of social learning recently attracting increas-

ing attention is Swarm Intelligence (SI). There are

two main classes of algorithm in this field: ant colony

system (ACS) and particle swarm optimization (PSO)

(Bonabeau et al., 1999). The former is inspired by

the collaborative behavior of ants while the latter is

derived from the flocking behavior of birds and fish.

ACS and PSO have been used in Automatic Pro-

gramming. O’Neill and Ryan present an automatic

programming model called Grammatical Swarm (GS)

(O’Neill and Brabazon, 2006). In this model, each

particle or real value vector represents choices of pro-

gram construction rules specified as production rules

of a Backus-Naur Form (BNF) grammar. In other

words, each particle shows the sequence of rule num-

bers by applying which a program can be constructed

from the starting symbol of the grammar.

Other researchers have used ACS for automatic

programming. Roux and Fonlupt (Roux and Fonlupt,

2000) use randomly generated tree-based programs.

A table of program elements and corresponding val-

ues of pheromone for these elements is stored at each

node. Each ant builds and modifies the programs ac-

cording to the quantity of an element’s pheromone at

each node.

Boryczka and Czech have presented two other

models of Ant programming (Boryczka and Czech,

2002; Boryczka, 2002). They used their model only

for symbolic regression. In the first approach - called



the expression approach - they search for an approx-

imating function in the form of an arithmetic expres-

sion written in Polish (Prefix) notation. In the second

approach, the desired approximating approach is built

as a sequence of assignment instructions which evalu-

ates the function. That is, there is a set of assignment

instruction defined by the user; each of these assign-

ment instructions is placed on a node of graph. Then,

ants build their program by selecting the sequence of

these instructions while passing through the graph.

Keber and Schuster offer a new AP model using

a context-free grammar and an ant colony system,

called Generalized Ant Programming (GAP) (Keber

and Schuster, 2002). The lack of a termination con-

dition for generating the path by each ant and gen-

erating paths with non-terminal components in GAP

motivated Salehi-Abari and White (Salehi-Abari and

White, 2008) to introduce Enhanced Generalized Ant

Programming (EGAP). EGAP, by providing a heuris-

tic for path termination inspired by building construc-

tion and a novel pheromone placement algorithm ad-

dresses the weaknesses of GAP and demonstrates a

statistically significant improvement.

Despite the existence of numerous swarm-based

automatic programming techniques, especially ant

programming, in the literature, they are rarely com-

pared to traditional simple genetic programming. We

have chosen EGAP as a representative of the ant pro-

gramming approach because of its generality and per-

formance to compare with GP. Furthermore, EGAP

has been shown to be superior to GAP in the experi-

mental domains used in this paper.

The main contribution of this paper is the com-

parison of genetic programming to EGAP, a repre-

sentative of the ant programming approach. We have

compared the performance of EGAP with GAP on 3

well-known problems: Quartic symbolic regression,

multiplexer and Santa Fe ant trail. The results ob-

tained demonstrate that GP has statistically significant

superior performance. We have shown through ex-

periments that EGAP suffers premature convergence

because of generating excessive numbers of identical

solutions. We do not claim here that by comparing

GP with EGAP that GP performance is superior to

that of all ant-based programming techniques. Rather,

we simply show that EGAP faces several challenges

suitable for study with further research.

The remainder of the paper is structured as fol-

lows. In sections 2 and 3, the GP and EGAP algo-

rithms are summarized respectively. Section 4 details

the experimental approach adopted and results. Fi-

nally, Section 5 provides conclusions and opportuni-

ties for future work.

2 GENETIC PROGRAMMING

Genetic programming represents programs in a tree

structure (Koza, 1992; Koza, 1994; Koza et al., 1999).

More specifically, the tree is composed of functions

which are the internal nodes and terminals which are

the leaves. The set of terminals includes variables

(e.g., X) and constant numbers. An example of a pro-

gram tree is shown in Figure 1.
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Figure 1: GP Program tree structure

The program shown in Figure 1 represents 3X +

sin(X). It should be noted that some functions may

have two parameters and some have only one. In other

words, the arity of a given function within the func-

tion set is variable (e.g., 2 for + and 1 for sin) and

varies from one domain to another.

The basic premise of GP is to produce a random

initial population of program trees, and then apply ge-

netic operators such as crossover and mutation in each

generation. First, the fitness of all programs is cal-

culated. Then, programs are selected proportional to

their fitness by the use of a tournament (or other) se-

lection algorithm. If the total population is N, then k

random programs are selected with replacement. The

program with the highest fitness goes into the mating

pool. The next step is to crossover pairs of programs

in the mating pool by taking and swapping subtrees

from each program. This produces two new children.

When the process is complete, a new generation is

produced. We use the same process for generating so-

lutions for a fixed number of generations.

3 EGAP

3.1 Introduction

Enhanced Generalized Ant Programming (EGAP),

introduced by Salehi-Abari and White (Salehi-Abari

and White, 2008), is a new method of Automatic Pro-

gramming. EGAP is an approach designed to gen-

erate computer programs by simulating the behavior

of ant colonies.When ants forage for food they lay

pheromone on the ground that affects the choices they

make. Ants have a tendency to choose steps that have

a high concentration of pheromone.



3.2 Methodology

In EGAP and GAP, L (G ) is the programming lan-

guage in which an automatically generated program

is written and it is specified by the context-free gram-

mar G = (N , T erm, R , S ). In other words, L (G )
is a set of all expressions that can be produced from

a start symbol S under application of R rules. Note

that, N is a set of non-terminal symbols, and T erm

is a finite set of terminal symbols. Thus,
L ( G ) = { P | S ⇒ P ∧ P ∈ T erm

∗} (1)

Where T erm
∗

represents the set of all expres-

sions that can be produced from the T erm symbol

set. Given the grammar G , a derivation of expres-

sion P ∈ L ( G ) consists of a sequence of t1,t2, . . . ,tp

of terminal symbols generated from the sequence of

derivation steps.

Assume the following G
G = (N = {S, T,F} ,
T erm = {a,+,∗,(,)} ,

R = {S → S + T |T, T → T ∗F|F,F → (S) | a} ,
S = {S})

Each derivation in this grammar represents a

simple arithmetic expression including the symbols

a,+,∗,(, and ). The simple derivation of this gram-

mar is presented below:

S ⇒ S + T ⇒ T + T ⇒ F + T ⇒ a + T ⇒ a +
T ∗F ⇒ a + F ∗F ⇒ a + a ∗F ⇒ a + a ∗ a

In EGAP, L (G ) is the search space of all possi-

ble expressions (programs) that can be generated by

the grammar G . Therefore, P ∈ L (G ), which is an

expression (a program), is a path visited by one ant.

In EGAP, the total amount of pheromone ant k

places on the trail is:

Θk = f(rank(k)) . Lk (t, p) (2)

Where Lk (t, p) is the value of the objective function

obtained by ant k at time t and f(rank(k)) is a factor

that depends on the rank of the path (program) found

by ant k. Note that ranking is done with respect to

the Lk (t, p) of ants. The contribution of ant k to the

update of a trail is computed as follows:

△T k (t) = Θk . 2 .
L−n + 1

L2+ L
(3)

The amount of pheromone in T table at time t is up-

date by:

T (t) := (1− p)∗T (t −1)+ △T (t) (4)

Where 0 < p ≤ 1 is the coefficient representing

pheromone evaporation, and

△T (t) =
K

∑
k=1

△T k(t) (5)

is the pheromone increase obtained by accumulat-

ing the contributions △T k(t) of each ant k = 1, . . . ,K.

EGAP, by using a heuristic function, encourages

ants to first build a good solution structure and then

tune it. The heuristic function is designed to have ants

expand the expression for a fraction of the maximum

number of allowed rules and then select completion

rules for the remainder. Maximum number of using

rules is a constant specified by the user to limit the

total number of rules which an ant can select to gen-

erate its own expression (program). Expression con-

struction has two phases: expanding the expression

and completing the expression. The first phase will

be performed in a fraction of maximum number of us-

ing rules and the second phase will be done in the

remainder.

From this perspective, the rules of a grammar fall

into two categories: expanding rules and completing

rules. Expanding rules tend to expand the expression

by producing some other non-terminal symbol as op-

posed to completing rules which have a tendency to

replace the non-terminal symbols of the expression

with terminal ones. EGAP presents an expanding fac-

tor ( fe) that shows to what extent a rule is an expand-

ing rule. High values of fe demonstrate the high prob-

ability of being an expanding rule while low values

shows the high probability of being completing rule.

Not only can the rules have an expanding factor but

also the non-terminal symbols have expanding factor

related to their rules’ expanding factors.

To calculate fe for all the rules and non-terminal

symbols, EGAP uses an iterative algorithm. This al-

gorithm first initializes the expanding factor ( fe) of

all the rules and non-terminal variables with a large

value. Then it updates the expanding factor of each

rule during every iteration. Each rule adds together

the expanding factor of the non-terminal symbols that

it generates and finally increments them by 1. Each

non-terminal variable updates its expanding factor by

calculating the average over all of its rules. The up-

date formula is:

fe (x, i) = [ ∑
y ∈ nt

fe (y,0) ]+ 1 i = 1 . . .N (6)

fe (x,0) = mean fe (x, i) i = 1 . . .N (7)

Where fe (x, i) is the expanding factor of the ith

rule of the non-terminal symbol x and nt is the set of

all non-terminal symbols included in that specific rule

(ith rule). fe (x,0) is the expanding factor of the non-

terminal symbol x.

EGAP has used the following heuristic function:

H ( x, i,n)= e
tn− n

tn
∗( log( f e(x,i) + 1)

(8)

Where x is a non-terminal symbol and i is an index of

x’s rules. Furthermore, n is the number of rules that an



ant has applied so far to reach its current expression

and tn is the constant threshold related to changing

the phase of the construction (1 < tn < maxN) while

maxN is the maximum number of using rules for ants.

As mentioned previously, ants choose their path based

on the amount of pheromone deposited on the edges,

the formula below gives us the probability of selecting

each edge:

Pk
e (t) =

[Te(t)]
α.[ηe]

β

∑c∈C(n
′
)
[Tc(t)]

α.[ηc]
β

(9)

Where Pk
e (t) is the probability of selecting the

edge e and Te(t) is the amount of pheromone de-

posited on the edge e and ηe is a heuristic value re-

lated to the selection of the edge e. C(n
′
) is the candi-

date set, the edges which can be selected when the ant

is on the node n
′
. The experimental parameters α and

β control the relative importance of pheromone trail

versus heuristic function.

4 EXPERIMENTAL RESULTS

In this section, the performance of EGAP and GP

will be compared in three experiments: Quartic sym-

bolic regression, Multiplexer, and Santa Fe ant trail.

These experiments are chosen as EGAP outperformed

GAP in the same set of experiments (Salehi-Abari and

White, 2008).

The evaporation rate, p, is 0.5 and α and β are

set to 2 and 1 respectively. The initial pheromone

concentration, T0, is 10−6 and maxN is 100. We set

the EGAP parameters the same value as suggested in

(Salehi-Abari and White, 2008). For EGAP, 10 sim-

ulations are run with 100 iterations and 20 ants have

passed through the graph in each iteration.

All experiments performed for GP use the

GPLAB environment (Silva and Almeida, 2005).

Populations of 25 individuals (randomly initialized,

maximum depth of 17) were evolved for 80 genera-

tions. All the settings of the GP are set to the default

settings of GPLAB; function and terminal sets and fit-

ness function are defined separately for each experi-

ment. For GP, 10 simulations are run with 80 genera-

tions.

For both of the algorithms (EGAP and GP), the

number of generated individuals is equal, which re-

sults in a fair comparison of the two algorithms. In

GP, 80 generation of 25 individuals (80*25=2000)

while in EGAP 100 iterations for 20 ants (100*20 =

2000). We chose 100 iterations of 20 ants for EGAP

because this number of iterations was used in the orig-

inal paper (Salehi-Abari and White, 2008), and the

best performance was achieved using these settings.

EGAP generally needs more iterations as opposed to

GP which often gives superior performance with a

larger population. We could have chosen 25 ants and

80 iterations (similar to the GP setting); however, this

provided inferior EGAP results. That is why we chose

the parameters such that the total number of evalua-

tions is the same for both techniques (80* 25 = 100 *

20 = 2000).

4.1 Quartic Symbolic Regression

The target function is defined as f (a) = a+a2 +a3 +
a4, and 200 numbers randomly generated in the range

of [-10,10] are used as the input for this function and

the corresponding output of them is found. Therefore,

the desired output for these 200 input numbers will be

these outputs called the y vector. The objective of this

experiment is that these two algorithms (EGAP and

GP) find the expression that has the nearest output to

y for a given x input vector. The fitness function for

all the two algorithms is defined as follows:

f (p,x,y) =
1

N

N

∑
n=1

|p(x(n))− y(n)| (10)

Fitness(p,x,y) =
1

1 + f (p,x,y)
(11)

Where p is the expression generated by the automatic

programming algorithm; x and y are the input vector

and desired output vector respectively. Finally, N is

the number of the elements of x. The grammar used

in this experiment for EGAP is given by:

< expr > →< expr >< op >< expr > | < var >
< op > → ∗ | − | + | /
< var > → a

And the function set and terminal set for GP are:

Function set = {∗,−,+,/}
Terminal Set = {a}
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Figure 2: Plot of the mean of the best fitness on quartic
symbolic regression problem over 100 iterations.

In Figure 2, the plot of the mean best fitness over

10 runs can be seen. GP outperforms EGAP in this



experiment. A t-test comparing these two methods

gives a score of 1.18 in favor of GP – significant at

the 75% confidence level.

4.2 4-to-1 Multiplexer

The goal of this problem is to find a boolean expres-

sion that behaves as a 4-to-1 Multiplexer. There are

64 fitness cases for the 4-to-1 Multiplexer, represent-

ing all possible input-output pairs. Program fitness

is the percentage of input cases for which the gen-

erated boolean expression returns the correct output.

The grammar adopted for this problem is as follows:

<mexpr> → < mexpr> < op2 >< mexpr>| <
op1 >< mexpr>| < input>

<op1 > → and | or

<op2 > → not

< input >→ in0 |in1| in2 |in3 | in4|in5

And the function set and terminal set for GP are:

Function set = {and,or,not}
Terminal Set = {in0, in1, in2, in3, in4, in5}

A plot of the mean best fitness over 10 runs for these

two algorithms is illustrated in Figure 3. As shown,

GP had the better performance compared to EGAP.

GP represents a statistically significant improvement

over EGAP for this problem. A t-test comparing these

two methods gives a score of 9.360 in favor of GP –

significant at the 99.5% confidence level.
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Figure 3: Plot of the mean of the best fitness on multiplexer
problem over 100 iterations.

4.3 Santa Fe ant trail

The Santa Fe ant trail is a standard problem in the

area of GP. The objective of this problem is to find a

computer program to control an artificial ant in such a

way that it finds all 89 pieces of food that are located

on the discrete trail. The ant can only turn left, right,

or move one square ahead. Also, it can check one

square ahead in the direction facing in order to recog-

nize whether there is a food in that square or not. All

actions, except checking the food, take one time step

for the ant to execute. The ant starts its foraging in the

top-left corner of the grid. The grammar used in this

experiment is:

< code > →< line > | < code > < line >
< line > →< condition > | < op >
< condition > → i f ( f ood ahead())

{ < line > }
else

{< line >}
< op > → le f t(); | right(); | move();

And the function set and terminal set for GP is:

Function set = {antI f}
Terminal Set = {antMove, antRight,antLe f t}
The fitness function for both algorithms is the

number of food items found by ant over the total num-

ber of food items, which is equal to 89.
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Figure 4: Plot of the mean of the best fitness on ant trail
problem over 100 iterations.

In Figure 4, the plot of the mean best fitness over

10 runs for the ant trail problem can be seen. GP out-

performs the EGAP in this experiment. A t-test com-

paring these two methods gives a score of 2.847 in

favor of GP – significant at the 99% confidence level.

4.4 Discussion

The main contribution of this paper is the compari-

son of well-known genetic programming to EGAP, a

representative of the ant programming approach. As

shown in the previous experiments, GP outperforms

EGAP on three well-known (Quartic symbolic regres-

sion, multiplexer and Santa Fe ant trail).

An intriguing question is, why does GP outper-

forms EGAP when EGAP provides more complex

control over the evolutionary process? By analyzing

the Figures 2, 3 and 4, we hypothesize that EGAP

suffers from premature convergence. Especially in

multiplexer and ant trail experiments, we observe that

EGAP converges prematurely before reaching itera-

tion 20. As premature convergence can happen in



cases of loss of genetic variation when every individ-

ual in the population is identical, we analyzed how

many distinct solutions are being generated by each

method. In this sense, if one method in a specific ex-

periment converges prematurely, it will generate more

identical solutions than the method which does not

converge prematurely on that experiment.

Figure 5: The average of distinct generated solutions.

Figure 5 shows the average of distinct generated

solutions over 10 simulations for each method in

three experiments. EGAP was successful in gener-

ating diversity solutions in Quartic symbolic regres-

sion experiments and that is why the performance

of EGAP in this experiment is comparable to GP’s

performance. In contrast, EGAP could not generate

as many distinct solutions in two other experiments

(multiplexer and ant trail) and as a consequence GP

had statistically significantly better results.

5 CONCLUSIONS

This paper compares the performance of GP to EGAP,

a representative of the ant programming approach.

EGAP is a technique designed to generate computer

programs by simulating the behavior of ant colonies.

The performance of EGAP with GAP was compared

on 3 well-known problems: Quartic symbolic regres-

sion, multiplexer and Santa Fe ant trail. The re-

sults obtained demonstrate that GP has statistically

superior performance. EGAP despite its complexity

does not offer any advantages over the simple and

traditional genetic programming. In our view, un-

til a mechanism is put in place to reintroduce diver-

sity, EGAP approaches will continue to struggle to be

competitive with GP.

The future work for ant programming approaches,

especially EGAP, includes utilizing a similar diversi-

fication mechanism reported in (Gambardella et al.,

1997). The diversification mechanism is activated if

during the predefined period there is no improvement

to the best generated solution. Diversification consists

of resetting the pheromone trail matrix.

We hypothesize that the power and advantage of

GP over swarm-based automatic programming is in

its exploration ability. We are interested in comparing

current automatic programming approaches in terms

of their exploration abilities in our ongoing research.
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