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ABSTRACT
Social networks facilitate a variety of social, economic, and
political interactions. Homophily and social influence sug-
gest that preferences (e.g., over products, services, political
parties) are likely to be correlated among people whom di-
rectly interact in a social network. We develop a model,
preference-oriented social networks, that captures such cor-
relations of individual preferences, where preferences take
the form of rankings over a set of options. We develop prob-
abilistic inference methods for predicting individual prefer-
ences given observed social connections and partial observa-
tions of the preferences of others in the network. We exploit
these predictions in a social choice context to make group
decisions or recommendations even when the preferences of
some group members are unobserved. Experiments demon-
strate the effectiveness of our algorithms and the improve-
ments made possible by accounting for social ties.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information filtering, Retrieval
models, Selection process

General Terms
Algorithms, Experimentation, Measurement

Keywords
Group recommendation; social networks; preferences; prob-
abilistic models; probabilistic inference

1. INTRODUCTION
Social networks play a crucial role in many social and

economic interactions [17], including discovery of job oppor-
tunities [15], the products we consume [13], or even weight
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gain [10]. Due to such factors, it is widely recognized that
individuals’ behaviors and preferences are correlated with
those of their friends or connections (e.g., music tastes [21]).

Because of this, and increasing availability of user prefer-
ence and behavioral data, it is essential to study the inter-
play of social network structure and individual behaviour,
attitudes, and preferences. This has lead to research fo-
cused on inferring individual attributes and behaviour us-
ing social connections, e.g., inference of ratings over items
[23, 24, 18], latent group membership [19], or latent “so-
cial positions” [16]. Yet surprisingly, using social networks
to infer individual preferences—in the form of rankings of
alternatives—has received little attention. Methods for in-
ference and learning of preference rankings are studied in
econometrics, psychometrics, statistics, and machine learn-
ing and data mining; in the latter case, they find application
to recommender systems, information retrieval and group
decision/recommendation problems (i.e., social choice), es-
pecially when faced with partial information. In contrast
to cardinal utilities, preference rankings (or ordinal prefer-
ences) are of special interest in social choice and group rec-
ommendation, since they help circumvent, to some extent,
the problem of interpersonal comparisons of utilities [2, 36].

In this work, we address how to use social network struc-
ture to support more accurate inference of preference rank-
ings and to make group decisions when some individual
preferences are unknown. Specifically, we exploit the fact
that homophily or social selection—association with simi-
lar individuals—and social influence—adoption of proper-
ties and attitudes of those to whom one is connected—can
be used to infer individual preferences more efficiently and
with less data. This can in turn support more accurate group
decision making with partial preferences.

To capture correlations of preference rankings over social
networks, we introduce preference-oriented social networks
(POSNs), a generative model in which the similarity of the
preference rankings of two individuals determines the odds
with which they are connected. We exploit this model to in-
fer unobserved individual preferences given observed prefer-
ences of others in the network. Intuitively, if we know some-
thing about the preferences of an individual’s friends, fam-
ily or colleagues—or their friends, etc.—we should be able
to more accurately predict their preference ranking if ho-
mophily or social influence shapes network dynamics. More-
over, we demonstrate how network structure, by allowing
such predictions, can be used to support effective group rec-
ommendations/decisions with incomplete preferences.



2. PREFERENCE-ORIENTED NETWORKS
We start by outlining our basic model (we contrast it with

existing network generation models in Sec. 3). A preference-
oriented social network (POSN) consists of: (i) a social net-
work, where nodes represent individuals, and edges repre-
sent some social relationship; and (ii) a finite set of options
over which individuals have preferences, where these prefer-
ences take the form of an ordering or ranking. The model
also includes a probabilistic generative process used to gen-
erate individual preferences and connections that induce cor-
related preferences.

The network in a POSN is an undirected graph G =
(N , E) over individualsN = {1, . . . , n}. We use a binary ad-
jacency matrix [eij ] where eij = 1 iff (i, j) ∈ E. We assume
a finite set of alternatives (or options) A = {a1, . . . , am},
e.g., a set of products, political candidates, policies, genre
of movies, etc. over which individuals have preferences. The
preference of node i is a ranking (or strict total order) ri
over A. Let Ω(A) denote the set of all m! rankings over A.

The generative process for POSNs has two stages: first, in-
dividual preferences are drawn from a ranking distribution;
then individuals form connections with a probability increas-
ing with the similarity of their preferences. Each node i’s
preference ranking ri is drawn independently from some dis-
tribution ρ(r|η) over Ω(A) with parameters η. Many rank-
ing distributions can be used, e.g., Plackett-Luce, Bradley-
Terry, etc. [25]. Here, we focus on the Mallows φ-model,
characterized by a “modal” reference ranking σ and a disper-
sion parameter φ ∈ [0, 1), with the probability of a ranking
r decreasing exponentially with its τ -distance from σ:

ρ(r|σ, φ) =
1

z(φ)
φdτ (r,σ) , (1)

where dτ (r, σ) is Kendall’s τ distance between r and σ (see
below) and z(φ) is a normalization constant.

To compute connection probabilities, we define the simi-
larity of two rankings using the τ metric, frequently used in
psychometrics and social choice:

dτ (ri, rj) =
∑
k 6=l

I[ri(ak) > ri(al) and rj(ak) < rj(al)],

Intuitively, dτ (ri, rj) measures the number of pairwise swaps
needed to transform ri to rj .

1 A strictly decreasing connec-
tion probability function c(d) : [0,∞) → [0, 1] specifies the
probability that two nodes i, j are connected given the dis-
tance dτ (ri, rj) between their corresponding rankings. We
use the following connection function [38]:

c(d|λ) = γ

(
1 +

d

β

)−α
. (2)

Here β controls average node degree and α > 1 determines
the extent of homophily (greater α implies more homophily).
We use γ ∈ (0, 1] to control the odds of connecting nodes
with the same ranking (accounting for the discrete nature of
ranking space). We sometimes write the connection prob-
ability as c(ri, rj). Denote the parameters of c by λ =
(α, β, γ); the parameters of the ranking distribution by η =
(σ, φ); and all POSN parameters by θ = (λ,η). Fig.1 il-
lustrates a small POSN, where individuals have preferences
over three options; nodes with similar preferences are more

1Other distance metrics for rankings can be used as well,
e.g., Spearman’s rho or footrule, or Hamming distance.

Figure 1: A POSN (α : 2; γ : 0.5;β : 0.5;m : 3;n : 100;φ : 0.7).

densely connected. Our POSN model is an instance of a
more general notion of a ranking network, a latent space
network model (see Sec. 3), in which latent attributes are
generic rankings over options. We analyze general topolog-
ical properties of this model in [33]; here we focus directly
on inference and group recommendation.

3. INFERENCE AND SOCIAL CHOICE
We now address two tightly connected problems, prefer-

ence inference and single-option group recommendation (or
consensus decision making). While preference inference is
interesting in its own right, it plays a vital role in group
recommendation when preferences of some group members
are unobserved.

3.1 Preference Inference
We assume that individuals are partitioned into two sets:

O ⊆ N , whose complete preference rankings are observed
(e.g., elicited or otherwise revealed); and U = N \O, whose
preferences are unknown or “missing.” Let RO = {ri|i ∈ O}
be the set of observed rankings and RU = {ri|i ∈ U} be
the set of random variables associated with unknown pref-
erences. In this work, we assume that the network G and
model parameters θ are known. Learning model parameters
given observed preferences is an important problem (and the
subject of ongoing research); but learning can exploit our so-
lution to the inference problem (e.g., when using EM).

Our goal in preference inference is to compute the poste-
rior distribution over unobserved preferences Pr(RU |G,RO,θ)
given observed preferences RO. We discuss sampling meth-
ods for approximating the posterior distribution in Sec. 5.
Other inference problems include the most probable expla-
nation (MPE), i.e., finding the instantiation of RU which
maximizes the posterior:

RMPE = arg max
RU

Pr(RU |G,RO,θ).

We may also be interested in the posterior over the prefer-
ences of a single individual i ∈ U :

Pr(ri|G,RO,θ) =
∑

RU\{ri}

Pr(RU |G,RO,θ)

and as well as the “individual MPE:”

rMPE
i = arg max

r∈Ω(A)
Pr(ri = r|G,RO,θ).

3.2 Group Recommendation
A key goal in this work is to exploit social network struc-

ture to make higher quality group decisions with incomplete
preference information. Suppose we need to select an option
from A for a group or “subpopulation” S ⊆ N using some
preference aggregation method (i.e., a social choice function,
for example, a voting rule). We distinguish the subsegment



S (e.g., friends planning an activity, the electorate in a small
district) from the larger society N (e.g., users of an online
social network, eligible voters in a country): while many
group decisions are local, they can be supported by knowl-
edge of the preferences of individuals outside that group.
We focus on the choice of a single option with an emphasis
on “social welfare maximization” relative to a scoring rule
g : (N,N) → R+ where g(k,m) is the positional score of
an option ranked kth relative to m options (the Borda and
plurality score are common examples, we define Borda in
Sec. 6). Define the social welfare of a ∈ A:

sw(a,S) =
∑
i∈S

g(ri(a),m),

with the goal of selecting a∗ ∈ A that maximizes sw(.,S).
In general, we will not know the preferences of all individ-

uals in S, requiring that we infer the social welfare of an op-
tion a given the observations at hand. Define sw(a,S|RO, G,θ)
to be this inferred social welfare, which varies depending on
the method of inference (we sometimes omit mention of G
and θ). Assuming each individual’s contribution to social
welfare is independent, it can be decomposed into a revealed
component sw rev (a,ROS ) (corresponding to observed prefer-
ences) and an inferred component sw inf (a,RUS |RO) (for un-
observed preferences):

sw(a,S|RO) = sw rev (a,ROS ) + sw inf (a,RUS |RO).

The revealed component is straightforward:

sw rev (a,ROS ) =
∑
r∈ROS

g(r(a),m).

But there are various ways to define the inferred component.
Expected Score (ES). The most natural, principled way
to define inferred component is the expected score:

swE
inf

(
a,RUS |G,RO

)
=
∑
RUS

Pr(RUS |G,RO)
∑
i∈US

g(ri(a),m),

which can be computed in O(m!|US ||US |) time (where US are
those individuals with unobserved preferences). If Pr(ri|G,RO)
is pre-computed for each i ∈ US , we can write

swE
inf

(
a,RUS |G,RO

)
=
∑
i∈US

∑
ri

Pr(ri|G,RO)g(ri(a),m),

which can be computed in O(m!|US |) time.
Joint Most Probable Explanation Score (JMPES).
This uses the unobserved preferences, RMPE , which maxi-
mizes the joint posterior Pr(RU |G,RO,θ):

swJM
inf (a,RMPE

S ) =
∑

r∈RMPE
S

g(r(a),m).

It can be computed in O(|US |) time if RMPE is given.

Individual Most Probable Explanation Score (IM-
PES). This uses the instantiation rMPE

j for each j ∈ U that

maximizes the posterior Pr(rj |G,RO,θ):

sw IM
inf (a, {rMPE

j }) =
∑
j∈US

g(rMPE
j (a),m).

It is computable in O(|US |) time if the rMPE
j are given.

3.3 Related Work and Models
We review the related work on group recommendation,

network formation models, nodal attribute inference, prefer-
ence ranking learning, collaborative filtering methods using
social networks, and decision making on social networks.

Group Recommendation. Group recommendation can
be broadly categorized as follows: (i) Virtual/artificial pro-
file methods (see, e.g., [29]), where joint artificial user pro-
files for each group of users are created to keep track of
their joint revealed/elicited preferences; (ii) Profile-merging
methods (see, e.g., [42, 5]), which merge group member pro-
files to form a group profile, based on which recommenda-
tions are made; (iii) Recommendation/scoring aggregation
methods (see, e.g., [27, 3, 1, 35, 12]), which aggregate the
recommendations (or inferred preferences) for each group
member into single group recommendation list (or recom-
mended option). This aggregation is usually conducted by
a group consensus function (or social choice function). Our
method falls into this third category.

Network Formation Models. Our POSN model lies in
the class of random, static network formation models [31].
It is also a spatial (or latent space) networks [16, 4], where
nodes possess latent attributes and are connected with odds
determined by these attributes. The Waxman model [39]
distributes nodes uniformly at random on the plane with
node connection probabilities decreasing exponentially with
Euclidean distance. Hoff et al. [16] develop a similar model
where nodes are points in a d-dimensional “social space”.
The hidden variable model [7] generalizes the Waxman model,
giving nodes a hidden (real-valued or integer) random at-
tribute drawn independently from a specified distribution.

Nodal Attribute Inference. Inference of nodal attributes,
given social network structure, has also received attention.
Hoff et al. [16] develop inference and learning methods for
spatial models. Kim and Leskovec [19] propose a variational
EM method for learning model parameters given network
structure and node attributes, and for inferring latent at-
tributes. Other related work includes collective classification
[37] and active learning over networks [6].

Learning Preference Rankings. Distributional mod-
els of rankings are widely studied in statistics, psychomet-
rics and machine learning, though accounting for social net-
work structure has been unaddressed. EM has been used to
learn model parameters of mixtures of distance-based rank-
ing models given completely or partially observed individual
rankings [30, 9, 22]. Our model is distinct from those above
as it models preference correlations induced by social ties,
requiring new sampling and inference methods.

Collaborative Filtering and Social Networks. Col-
laborative Filtering (CF) methods which exploit social net-
works for rating prediction have recently become popular
(see for example, [23, 18, 24, 41, 14, 26, 20] and [40] for
a recent survey). These methods—along with traditional
CF methods—fall into two broad categories, memory-based
[14, 26, 20] and model-based [23, 18, 24, 41] approaches.
In memory-based approaches, the social network structure
is usually taken into account when computing the pairwise
similarity scores (or trust values) between users [14, 26].
These scores are then used for prediction of missing rat-
ings. Model-based approaches focus largely on latent space
probabilistic models in which users and items are embed-



ded in a low-dimensional latent feature space, and ratings
are generated by combining these feature vectors while ac-
counting for social network structure. Our model differs in
that it considers preference ranking correlations rather than
ratings correlations over social networks, and in its focus on
group rather than individual recommendation.

Group Recommendation using Social Factors. Group
recommendations based on social factors or interaction pat-
terns have recently drawn a fair amount of attention. Mas-
thoff and Gatt [28] analyse the effect of group member re-
lationship types on their emotional conformity and conta-
gion in a group recommendation task. Social relationship
strength has been considered in a group collaborative filter-
ing context [32]. Salehi-Abari and Boutilier [34] study empa-
thetic social choice in social networks, in which individuals
derive benefit based on both their own intrinsic preferences
and empathetic preferences, the latter determined by the
satisfaction of their neighbors.

4. TARGET DISTRIBUTIONS
We describe the form and structure of the joint distri-

bution induced by POSNs. Assuming that the preference
distribution parameters η are given, the joint over RU is:

Pr(RU |η) =
∏
r∈RU

ρ(r|η), (3)

where ρ(r|η) is the preference distribution. To specify the
distribution over G, given θ, we first focus on the probability
Pr(eij = 1) with which an edge occurs between two nodes
i and j in G. We define it under three conditions: (1) the
preferences of both i and j are unobserved (and drawn in-
dependently from ρ(r|η)); (2) one is observed and the other
unobserved; and (3) both are observed.

Unobserved preferences for both nodes. In this case,
Pr(eij = 1|θ) is the chance of an edge between two nodes
whose preferences are drawn independently from ρ(r|η):

E(θ) =
∑

r∈Ω(A)

∑
r
′∈Ω(A)

ρ(r|η)ρ(r
′
|η)c

(
dτ (r

′
, r)|λ

)
, (4)

(The expected number of edges in a POSN is
(
n
2

)
E(θ).)

Unobserved preference for one node. When only one
node’s preference is observed (say i) Pr(eij = 1|ri,θ) is:

D(r,θ) =
∑

r
′∈Ω(A)

ρ(r
′
|η)c

(
dτ (r

′
, r)|λ

)
. (5)

D(r,θ) also determines the expected degree of a node with
ranking r, which is simply (n− 1)D(r,θ).

Observed preferences for both nodes. The edge prob-
ability between i and j when both ri and rj are observed is
Pr(eij = 1|ri, rj ,θ) = c(dτ (ri, rj)|λ).

Using these edge probabilities, the probability Pr(G|RO,θ)
of graph structure G given observed preferences RO is:

Pr(G|RO,θ) =
∏

i,j∈U ; i<j

E(θ)eij (1− E(θ))1−eij ×

∏
i∈O,j∈U

D(ri,θ)eij (1−D(ri,θ))1−eij ×

∏
i,j∈O; i<j

c(ri, rj |λ)eij (1− c(ri, rj |λ))1−eij . (6)

We formulate Pr(G|RU , RO) by focusing on the probabil-
ity Pr(eij |ri, rj) of an edge between i and j. Since Pr(eij |ri, rj) =
c(ri, rj)

eij (1− c(ri, rj)1−eij , we have:

Pr(G|RO, RU ) =
∏
i,j∈N
i<j

c(ri, rj)
eij (1− c (ri, rj))

1−eij (7)

Using Bayes rule, the posterior over RU given observed
preferences RO and network G is given by:

Pr(RU |G,RO,θ) =
Pr(G|RU , RO) Pr(RU |η)

Pr(G|RO,θ)
, (8)

where one can use Eq. 3, Eq. 6, and Eq. 7 for computation
of Pr(RU |η), Pr(G|RO,θ), and Pr(G|RU , RO), respectively.

5. SAMPLING METHODS
For both preference inference and group recommendation,

we must compute the joint posterior Pr(RU |G,RO,θ). Ex-
act computation is, not surprisingly, computationally expen-
sive. So we develop sampling methods to approximate the
posterior. At a high level, we sample L preference profiles
R(1), . . . , R(L) from the posterior, where each profile consists

of a preference ranking for each individual i ∈ U . Let R
(t)
i

denote the sampled preference ranking of individual i ∈ U
in the tth profile. We approximate the posterior preference
of any individual i ∈ U , Pr(ri = l|G,RO,θ), ∀ l ∈ Ω(A),
and the expected score of the inferred component of social
welfare swE

inf

(
a,G,RO, O

)
as follows:

Pr(ri = l|G,RO,θ) ≈ 1

L

L∑
t=1

I[R
(t)
i = l], and

swE
inf

(
a,G,RO

)
≈ 1

L

L∑
t=1

∑
i∈U

g(R
(t)
i (a),m)

Here g(R
(t)
i (a),m) is the positional score of option a in i’s

preference ranking for the tth sample. L must be sufficiently
large to ensure a good approximation. More critically, we
must be able to draw independent samples from the (un-
known) posterior. To do this, we use an MCMC algorithm,
specifically, Gibbs sampling, where individual variables are
in turn sampled using Metropolis sampling.

We use iterative Gibbs sampling to sample unobserved
preferences RU . It begins with an initial preference profile
R(0), completing the rankings for all unobserved preferences.

At each iteration l, we sample r
(l)
i for each i ∈ U from the

conditional distribution

Pr(ri|R(l)
1 , . . . , R

(l)
i−1, R

(l−1)
i+1 , . . . , R

(l−1)

|U| , RO).

The order in which preferences are sampled can impact the
efficiency of the method. The order can be deterministic or
stochastic, and may be based on node degree or the number
of observed preferences of their neighbors. In our experi-
ments, we use a fixed arbitrary ordering.

To sample ri from the distribution Pr(ri|R\i) we use Metropo-
lis sampling. By Eqs. 6–8 and 3, the probability of ri given
all other individual preferences is Pr(ri|R\i) ∝ p̃(ri), where

p̃(ri) =
∏
j∈U

Pr(eij |ri, rj)
∏
j∈O

Pr(eij |ri, rj)φdτ (σ,ri),

which can be computed in O(n) time. To sample ri at iter-
ation l of Gibbs, we sample r∗ from a conditional proposal



distribution

q(r∗|R(l−1)
i ) =

1

z(φ̂i)
φ̂i
dτ

(
r∗,R(l−1)

i

)
,

which is a Mallows distribution that uses the previous sam-

ple of i’s preference R
(l−1)
i as its reference ranking and a

dispersion parameter φ̂i (below we fix φ̂i = φ, preference

dispersion parameter). We accept proposal r∗ as R
(l)
i (i.e.,

set R
(l)
i = r∗) with probability

A(r∗, R
(l−1)
i ) = min

(
1,

p̃(r∗)

p̃(R
(l−1)
i )

)
;

otherwise, we set R
(l)
i = R

(l−1)
i . To sample from the

Mallows model q(.), we use the repeated insertion model
[11]. One can sample L preference profiles given |RU | unob-
served preferences in O(L|RU |nm) time using our proposed
method. Assuming |RU | is a constant fraction of n, our
sampling methods runs in O(Ln2m) time, which may prove
intractable for very large networks. Designing more scalable
sampling methods is an important future direction.

6. EMPIRICAL ANALYSIS
We conduct experiments to assess the effectiveness of our

inference and group recommendation algorithms. We mea-
sure the accuracy of preference inference, and more impor-
tantly, assess the quality of the group decisions reached when
exploiting network structure to better deal with missing
preferences of certain group members.

Experimental Setup. We experiment on three types of
data sets: two-sided synthetic data in which both preferences
and networks are randomly generated; one-sided real-world
data in which preferences are derived from Irish electoral
data, but networks are synthetically generated; and two-
sided real-world data in which both preferences and network
structure are derived from Flixster. We assume the model
parameters θ are known (e.g., learned from a similar popu-
lation). Unless otherwise noted, we set (α, γ, β) = (2, 0.7, 1)
and n = 200. We use Borda as our scoring rule where
g(r(a),m) = m−r(a). While other rules can be used, Borda
is a useful surrogate for random utility models [8] and serves
to illustrate the value of the POSN model.

We vary the degree to which preferences are observed with
parameter ψ ∈ [0, 1], the probability that any node’s ranking
is observed. By varying ψ, we can assess the impact of
preference observability on the efficiency of our methods. We
select the decision making group S ⊆ N (with ns members),
for whom a group recommendation is to be made, using
one of three methods. RSA (Random Selection from All)
selects ns individuals uniformly at random from N . RSU
(Random Selection from Unobserved) select ns individuals
uniformly at random from U (e.g., reflecting a company with
access to a social network and the preferences of existing
customers, and wanting to market to new prospects without
knowing their preferences). RSC (Random Selection from
Community) selects a connected community: it first selects
a “seed” individual at random, then extends the group by
selecting ns − 1 friends of this seed at random; if this set is
smaller than ns − 1, friends of these friends are selected at
random to complete the group.

Performance Metrics. To measure prediction accuracy,
we determine how close inferred preferences are to the true

m/ψ ψ = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8

m = 3 0.000 0.000 0.000 0.000
m = 4 0.009 0.008 0.007 0.006
m = 5 0.168 0.158 0.152 0.148
m = 6 0.378 0.367 0.349 0.335

Table 1: Avg. MSEK (10 instances), various m, ψ.

unobserved preferences from a held out test set. We measure
closeness using mean scaled expected Kendall-τ (MSEK):

MSEK =
1(

m
2

)
|U |

∑
i∈U

∑
r∈Ω(A)

Pr(r|G,RO,θ)dτ (r, r̂i),

where r̂i is the true preference of i and
(
m
2

)
is maximum

τ -distance between two rankings over m options. MSEK lies
in [0, 1]: MSEK = 0 if all preferences are inferred correctly,
while MSEK = 1 implies maximum “inaccuracy.”

To examine the decision/recommendation quality using
inferred preferences, we compare its social welfare with that
of the decision that would be made had actual preferences
been observed. Let sw(·) denote social welfare with true
preferences, and a∗ and a∗inf be the optimal options under
given actual and inferred preferences. Rather than directly
comparing social welfare, we define relative social welfare
loss (RSWL) to be [sw(a∗)− sw(a∗inf )]/sw(a∗) (we report it
as a percentage).

Benchmarks. We consider several other ways of dealing
with missing preferences in decision making, and use these as
benchmarks. In φ-mallows inference (PM), we assume that
all unobserved preferences are independent and are drawn
from a φ-mallows model (with parameters identical to those
in the POSN model). We calculate the same inferred so-
cial welfare functions as in our model, namely, ES, JMPES,
IMPES. Note that ES will be the same for all unobserved
preferences and can be computed once. Moreover, JMPES
and IMPES must be the same as the reference ranking σ.
Another approach to missing preferences, dubbed Discard
Unobserved (DU), is to ignore them and make a decision
using only observed preferences.

For each fixed setting, we generate 10 partially observed
POSNs. In each, we burn-in 1000 samples, then collect 1000
samples using our Gibbs-Metropolis method. We report
MSEK averaged over the 10 instances. For each instance,
we also randomly select 40 decision making groups of fixed
sizes {3, 5, 10, 15, 20} using RSA, RSU, or RSC, giving 400
social choice instances per an experimental setting. RSWL
is reported as the average over these 400 instances.

Two-sided synthetic. We set φ = 0.85, σ = (1, . . . ,m),
and λ as stated above. Table 1 shows average MSEK for var-
ious ψ and m. Unsurprisingly, MSEK increases with m and
decreases with ψ. As m increases, the number of rankings
increases factorially, as does the the support of the ranking
distribution. In such cases, lower MSEK requires more in-
formation for accurate prediction. When m = 3, n = 200
is sufficient to push MSEK to almost 0. With m = 4, it
remains very low. To examine the effect of n on MSEK,
we fix m = 6 and ψ = 0.8 but vary n: Table 2 shows that
MSEK decreases with n as expected. Decision quality of
our methods in this setting is qualitatively similar to those
discussed below. Our ES and IMPES methods outperform
the other benchmark methods in most settings, including
over all group sizes, group selection methods, and various m
(even for m = 6 with relatively high MSEK).
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Figure 2: Avg. RSWL (over 400 instances) for various group sizes ns, group selection methods, and m but
fixed ψ = 0.5, ε = 0.2.

n 200 400 600 800 1000
MSEK 0.335 0.2474 0.185 0.141 0.106

Table 2: Avg. MSEK (10 instances), ψ = 0.8, m = 6.

m / ε ε = 0.0 ε = 0.01 ε = 0.02 ε = 0.05
m = 4 0.007 0.009 0.009 0.022
m = 5 0.172 0.198 0.214 0.274

Table 3: Avg. MSEK, ψ = 0.5, n = 200, Irish data set.

Irish data. We test our methods using real-world pref-
erences from the 2002 Irish Election, Dublin West Con-
stituency, with 9 candidates and 29, 989 ballots of the top-t
form, of which 3800 are complete rankings. We created pref-
erence data sets with various values m from these complete
preferences, by choosing m candidates with highest aggre-
gate Borda score, and limiting each individual’s preferences
to these m options.

For each m, we learn φ and σ from its corresponding fil-
tered data set and used those parameters in our methods
(hence we have a loose prior over preferences, but not a pre-
cise prior for specific group , see below). For each experimen-
tal setting, we generate 10 partially observed POSNs with
ψ = 0.5 and 200 individuals with preferences drawn from the
filtered Irish data set. We then generate the POSN using our
model, but with additional noise: we randomly change the
parity of each eij (i.e., delete or add an edge) with proba-
bility ε. Though we create a synthetic social network using
our POSN model, adding noise in this fashion reflects sce-
narios in which the social network is not generated using our
specific model, or when learned model parameters provide a
less-than-ideal fit to the underlying data.

Table 3 reports average MSEK when ε varies (m = 4, 5).
Unsurprisingly, MSEK increases with both m and ε when
n and ψ are fixed. MSEK is very low when m = 4, even
with high ε = 0.05 (10 edge flips per node in expectation).
Tables 1 and 3 show comparable MSEK values for m = 4, 5,
suggesting that that even in scenarios where the preference

distribution ρ(.) is not known a priori, but is a learned φ-
mallows model, POSNs support effective inference.

Fig. 2 shows average RSWL with ψ = 0.5 and ε = 0.02
(400 expected edge flips in the network). We vary m, the
group selection method and the inference method. Our
POSN-ES and POSN-IMPES approaches outperform the
other benchmarks in most settings, including: all situations
in which no group preferences are observed (see Fig. 2(b)
and 2(e)); and even with m = 5 (see Fig. 2(d)-2(f)) despite
its relatively high MSEK (see Table 3). RSWL in all bench-
mark methods (PM-ES, PM-JMPES, DU) is very sensitive
to group size, increasing dramatically as group size decreases
(see Fig. 2(a)-(f)). However, POSN-ES and POSN-IMPES
are more robust to group size (see Fig. 2(a)-(f)). POSN-
IMPES approximates POSN-ES reasonably well, while POSN-
JMPES also performs well.

Flixster data. The Flixster dataset [18] consists of a social
network of movie watchers and their ratings of movies, and
allows a test of our methods using both real-world network
and preference data. Because movie ratings are sparse, we
aggregate them into preferences over movie genres (genres
were determined automatically using the Rotten Tomatoes
and IMDB web sites). Let r̃um be the rating of user u for
movie m where r̃um ∈ {0.5, 1, · · · , 5} if u has rated m oth-
erwise 0 (for missing ratings). For each user u and genre g,
we define a user-genre score

SCug =
1

Îu

∑
m

sign(r̃um)Amg,

where Îu =
∑

sign(r̃um) is the number of movies rated
by u, and Amg = 1 if movie m has genre g (and Amg =
0 otherwise). This score reflects the relative number of
movies of each genre watched by a specific user. This is
converted into a ranking of genres for each user u by or-
dering genres according to their scores SCug. We limit our
focus to four diverse genres—Comedy, Drama, Kids/Family
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Figure 3: Avg. RSWL (400 instances), Flixster.

ns=3 ns=5 ns=10 ns=15 ns=20

POSN-ES 7.34 5.04 2.86 2.57 2.66
POSN-JMPES 9.89 7.67 4.33 3.69 3.29
POSN-IMPES 9.59 7.09 4.34 3.89 3.77
PM-ES 9.36 8.07 7.56 6.76 6.73
PM-JMPES 9.72 8.54 8.63 7.84 7.48
DU 20.61 12.07 5.31 2.92 2.12

Table 4: Std. RSWL in percentage (Flixster, ψ=0.5)

and Mystery/Suspense.2 We run our methods on a 272-
node subgraph of the Flixster data set, with 924 edges. We
estimate a φ-Mallows model and POSN model parameters
using maximum likelihood methods on this sub-network; the
learned parameters are (α, β, γ, φ) = (2.05, 1.06, 0.07, 0.33).
For each run, we test our methods on 10 instances of a par-
tially observed network, censoring each individual’s genre
preference with probability ψ = 0.5 or ψ = 0.3.

Average MSEK is 0.242 and 0.256 for ψ = 0.5 and ψ = 0.3
(resp.). This suggests that genre preferences are reasonably
predictable using the POSN model. Fig. 3 shows decision
making performance, i.e., average RSWL, for the various
methods described above using RSC to select groups. Each
of our POSN-sensitive methods—ES, IMPES, and JMPS—
outperform the φ-Mallows benchmark for all group sizes,
and outperform DU significantly for small groups. DU per-
forms comparably to methods that account for network struc-
ture when groups are larger (15 or 20 individuals) since,
in expectation, the preferences of 7–10 group members are
observed: this is sufficient to make a good decision with-
out estimating missing preferences explicitly due to normal
sampling bounds from the underlying Mallows model. This,
in addition to the fact that homophily across a large group
makes it likely that the missing preferences are similar to
those observed, means that making a group decision based
only on observed preferences usually results in near-optimal
decisions. Table 6 reports the std. dev. for these results
when ψ = 0.5. ES has the smallest variance in RSWL in
general, implying more robustness in the decisions made.
Overall, ES is the most reliable method of those analyzed
here. (Results for ψ = 0.3 are qualitatively similar).

2We focus on these four genres in part to increase data “den-
sity.” Our choice of these genres may impact the results
below; future investigation is needed to assess this impact.

7. CONCLUDING REMARKS
We introduced preference-oriented social networks (POSNs)

to capture the correlation of preference rankings between
individuals who interact in social networks. We developed
effective inference methods to predict an individual’s pref-
erences by exploiting these correlations. We also developed
methods for group recommendation when the preferences of
some (or even all) group members are unobserved. Our ex-
periments showed the value of accounting for social ties in
inference and group recommendation when faced with miss-
ing preferences.

This work is a starting point for the deeper modeling of
preferences in a social network context. Interesting future
directions include: empirical investigation of preference cor-
relations in real-world networks; scalable learning methods
for estimating model parameters; more efficient sampling
methods based on network topology; studying other aggre-
gation functions (e.g., other social choice functions, voting
rules, bargaining solution concepts, etc.), and extensions to
other social choice problems (e.g., matchings, assignments).

Of practical importance is investigating the extent to which
preference rankings are correlated and play a role in shap-
ing connections in real-world social networks. Developing
scalable methods for learning model parameters is essential;
such learning techniques can exploit our inference methods
as important building block (e.g., in EM-based algorithms).
More efficient sampling methods can be designed by taking
into account the presence or absence of subsets of possible
edges. Our model can provide the basis for more effective
preference elicitation. As decision making using MPE seems
to provide a reasonable approximation to optimal decisions,
studying how MPE can be computed or approximated with-
out the use of sampling remains of interest. Similar to active
learning methods [6], the tighter integration of inference and
decision making methods would also be of value.

There are a number of potential extension to our POSN
model. This includes accommodating partial information
about the preferences of specific users (e.g., a small set of
pairwise comparisons); and incorporating both the strength
and types of relationships between individuals. Such gener-
alizations may offer greater performance in certain prefer-
ence inference and group recommendation settings.
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