
Media Monitoring Using Social Networks 
Tony White 

Carleton University 
1125 Colonel By Drive 
Ottawa ON K1S 5B6 

arpwhite@scs.carleton.ca

Wayne Chu 
Carleton University 

1125 Colonel By Drive 
Ottawa ON K1S 5B6 

Amirali Salehi-Abari 
Carleton University 

1125 Colonel By Drive 
Ottawa ON K1S 5B6 

asbari@scs.carleton.ca 

ABSTRACT 
With the rapid rise in the number of weblogs, or blogs, on the 
World Wide Web (WWW), there is a growing need to be able to 
quickly search for discussion on specific topics. While keyword 
searches using tools such as Google [4] or Technorati [18] can 
yield useful results, we run into the problem of having to enter 
contextualizing keywords to filter out unwanted and irrelevant 
search results. This has the unfortunate consequence of making 
the search process more complicated and possibly filtering out 
search hits that we would typically want. This paper outlines an 
approach to narrow search results to only relevant hits, while 
allowing for general keyword queries. Since the blogosphere 
constitutes a social network, the solution, BlogCrawler, attempts 
to use the properties of social networks to narrow the focus of 
search queries to only those blogs that the user is interested in.  
This paper presents an algorithm and empirical evaluation that 
exploits the social network implicit in blogs found on the WWW 
for the purpose of improving search on the Web. 

1. INTRODUCTION 
Increasingly today, corporations, governments, and private 

citizens are demanding to know what others are thinking. 
Corporations would like to know what the latest trends are in 
society today, governments need to know how policies are being 
received amongst the general population, and private citizens 
often are simply interested in knowing what their peers are 
thinking about. Weblogs, or blogs for short, are a recent 
phenomenon in cyberspace that has emerged which offers an 
incredibly useful collection of information for media analysis. 
Blogs offer individuals the ability to read what people on the 
Internet are thinking right now. Indeed, the nature of blogs, online 
journals written by individuals around the world that are updated 
frequently, often daily, present an unfiltered view of world, 
discussing whatever the author feels like talking about. The 
content found on blogs varies greatly from topics such as 
technology tips and tricks, politics, arts and entertainment, and 
even personal accounts of the author’s daily life. The unedited, 
uncontrolled nature of this media means that there are no limits to 
what blogs can talk about. 

The rapid growth in the number of blogs on the Internet also 
means that this phenomenon is not something restricted to a small 
subset of the most technologically literate individuals in society. 
This makes blogs highly relevant and an attractive target for data 
mining. While, only a handful of blogs initially existed in 1998, 
the numbers have grown exponentially over the years to the point 
that they now number in the millions, according to leading blog 
tracker, Technorati [12], [18]. Many blogs [14] also have high 
readership numbers, such as the popular technology blog, 
Slashdot, which has an audience numbering in the hundreds of 
thousands [13]. With millions of blogs and their associated 
authors, or “bloggers”, expressing ideas, the amount of 

information one could find in this subset of the World Wide Web 
is clearly immense. 

More important to this paper, however, is the fact that blogs 
are not simply self-contained journals on the Web. Like any 
website, blogs contain links to other sites – this includes other 
blogs. Bloggers will link to others with similar interests. These 
linkages allow sites to interact with each other, forming an online 
community. What emerges from this is the formation of social 
networks within the so-called blogosphere [9], creating order 
amongst the chaos of the web. It is this observation that motivates 
the algorithms and their evaluation described in this paper. As 
Section 3.0 of this paper outlines, the power of social networks is 
great, so exploiting the inherent social networks in the 
blogosphere is something of great interest.  

 

2. PROBLEM DESCRIPTION 
The project described in this paper empirically evaluates if 

we can search the blogosphere to see what people are saying 
about any particular topic. We will attempt to harness the power 
of the blogosphere determining if useful, relevant search results 
can be returned using simple keyword queries. This may seem 
simple like a simple task since keyword searching is something 
that even the simplest search engines are capable of. However, 
with the ability for anyone, anywhere to start publishing a blog, 
finding the information one wants while minimizing the 
complexity of a query may not be as simple as searching every 
single blog for a specific search term. The meaning of a keyword 
is dependent not only on the dictionary meaning of the word, but 
also the meaning the human user placed on it and the context in 
which it is found. For example, if one were to want information 
regarding the recent Canadian federal budget, a simple search for 
the term “budget” would be inadequate. Searching for the term on 
the popular search engine Google produces over 93 million results 
– far too many for anyone to sift through. Even restricting the 
search to blogs using the blog search engine Technorati produces 
over 180,000 results with posts about a disparate range of topics. 
The technique for conventional searches, then, is to expand the 
keyword search to provide the needed context. For example, 
searching for the terms “Canadian federal budget” on Google 
reduces the number of hits to 3.2 million. Table 1 outlines the 
results of various keyword searches performed on the blog search 
engine Technorati. As we can see from the table, providing 
context clearly narrows the amount of hits returned. The trade off, 
however, is that search queries must become more complex. 

 
Table 1: Search Results of Various Keyword Queries 

 

IEEE International Conference on Social Computing / IEEE International Conference on Privacy, Security, Risk and Trust

978-0-7695-4211-9/10 $26.00 © 2010 IEEE

DOI 10.1109/SocialCom.2010.102

661



The question that this paper attempts to answer, then, is 
whether or not it is possible to return concise, relevant search 
results from the blogosphere while minimizing the complexity 
required in the actual search query. To do this, we will use the 
power of social networks to limit the scope of search queries such 
that a simple keyword such as “budget” will return only pages that 
the user will want to see. More specifically, if we search only 
within blogs located within -- to continue our example -- a social 
network of Canadian political sites, then the need to provide 
contextualizing keywords in the search query will no longer exist. 
This is analogous to searching for books only within a specific 
genre. It may be helpful first, however, to outline what a social 
network is in the context of computer networks and the web. 

 

3. SOCIAL NETWORKS AND BLOGS 
In the physical world, a social network is a “network of 

friendships or other acquaintances between individuals” [3]. As 
friends or acquaintances, these individuals often share common 
interests and backgrounds with each other. At a basic level, 
everyone participates in a social network, defined by the everyday 
interactions one goes through. The concept is one that spans 
disciplines such as sociology, political science, and in our case, 
computer science, since in all cases the nature of how we form 
and keep human relationships is of great interest. We can easily 
transfer the idea of the social network to that of computer 
networks, and more specifically, to the blogosphere. In this case, 
each blog acts as an individual, or a node in the network, and the 
hyperlinks on each blog act as the connections between the nodes. 
Figure 1 demonstrates the basic structure of a social network in 
the blogosphere as an undirected graph, showing how the network 
of blogs is analogous to a physical network of friends and 
classmates. We can further transfer the concept to computer 
networks when we observe that the people who use computer 
networks “have social relationships with each other that are 
embedded in social networks” [19]. From this, we can infer that 
the network of blogs within the blogosphere has an inherently 
intelligent human-based organizational structure. This structure 
has several important properties that we will apply here to solve 
our search problem. 

The first significant property is that of “community 
structure” in which we see similar nodes densely clustered 
together within a wider network. In the context of a physical 
social network, these clusters of nodes represent social groupings 
of those with common interests or backgrounds [3]. Applying this 
to the blogosphere, and treating the hyperlinks between blogs as 
connections in the network, we would expect blogs to be clustered 
together such that they all cover similar types of topics. Therefore, 
we can infer that if we were to start at a specific blog and search 
within it and it’s neighbours, we would be predominantly 
searching blogs of a similar nature and type, providing the context 
that we were seeking earlier in our problem description. 

The second property is the “small world effect”, which states 
that the distance between two vertices in any network is short. 
Indeed work has suggested that this property is “pervasive in 
networks arising in nature and technology, and a fundamental 
ingredient in the structural evolution of the World Wide Web” 
[10]. The basis of this is an experiment performed by Stanley 
Milgram in which complete strangers in Nebraska were tasked 
with getting a letter to a stockbroker in Boston. These strangers 
could only pass the letter on to someone with whom he or she was 
on a first-name basis. Milgram found that the average number 
handoffs required for a letter to be received by the stockbroker 

were only about six [15]. If one were to take each handoff of the 
letter as a connection in a network, we can see that within a social 
network of any sort, one can expect that the distance between any 
two nodes would be small. As a corollary, this means that a web 
crawler would only need to crawl very few levels before a sizable 
amount of the social network is covered. Moreover, Girvan and 
Newman discuss that many networks display a property of 
transitivity, in that nodes which share a common neighbour are 
likely neighbours of one another [3]. As will be discussed later in 
Section 3.1 this makes extracting a community of blogs from 
within the greater blogosphere much less complex since the depth 
one must crawl to retrieve a suitable number of blogs is low. 

A third property is the idea of trust relationships in the social 
network. When a human decides to form a relationship with 
another, this forms a social exchange. In one regard, the exchange 
occurs to fulfill a purpose of some kind. In another regard, 
“exchanges involve investments, gains and losses of time, money, 
energy, emotions, expectation, and many other energetic and 
motivational elements” [16]. Put simply, when someone in a 
social network creates a connection with another individual, then 
there is an implicit recognition that making that connection was 
worthwhile. In other words, an individual trusts the other enough 
to make a connection. Within the blogosphere, connections are 
made in the form of hyperlinks to other blogs. The fact that a blog 
has linked to another means that there is some value in the other 
blog. Extending this idea, if a blog is linked to by many people, 
then, theoretically, this means that the blog is found to be 
worthwhile by many, improving its level of trustworthiness. 
Kleinberg [21] recognized this with identification of hubs and 
authorities. This concept, as will see later in the paper, is 
important in determining which blogs are more valuable than 
others. 

 
Figure 1: Graph of a Social Network 

4.  SOLUTION 
4.1 Overview 

Let us return, now, to the original problem outlined in this 
paper. Namely, that of narrowing search results while maximizing 
the amount of generalization possible within a keyword search 
query. To accomplish this, we will implement a blog search 
engine, called BlogCrawler which will use the inherent social 
networking properties of the blogosphere, ensuring that to the end 
user searching for information is as simple as using any other 
search engine available on the web. In the perspective of the end-
user, he or she will still be required to enter at least one keyword 
to search on. However, we will eliminate the need for context 
specifying keywords, such as “Canadian” and “federal”, to use 
our previous example, by limiting the number of sites that we will 

662



search to those of a specific topic. Instead of searching millions of 
sites for a specific keyword, we will only search hundreds. 

This obviously leads to the question of how we determine 
which sites to include in our query and which to ignore. This is 
where we use the properties of social networks to aid us. We 
know that because of the property of community structure, 
neighbours of a blog will be of similar type. We also know that 
due to the small-world effect, the members of the social network 
of blogs we want to search will all be situated near each other in 
terms of number of links traversed to get from one to another. 
Finally, in the context of our problem, we know what types of 
blogs we are interested in. For example, we will know beforehand 
that we want information about Canadian politics. Therefore, in 
our solution we will pre-select a small number of “expert” blogs 
deemed to be representative of the type of blogs we want to 
search. We will treat these selected blogs as the root nodes of the 
social network being traversed, and then crawl through the blogs 
connected to them. The end result is that after traversing only a 
few levels of links, we will have indexed a sizable number of 
blogs, most of which should be similar in type to the root blogs. 

Once we have a collection of blogs to search from, then 
finding the information we want is simply a matter of entering a 
general keyword and performing a text-based search of the 
content of the blogs collected. If we were successful in limiting 
the type of blogs in our collection, then the results returned should 
be limited to only those topics that we are interested in. There is 
one caveat. Because of the uncontrolled nature of the blogosphere, 
anyone can write anything they want. As well, some blogs have 
more relevant information and are more trustworthy than others. 
This is where the idea of trust relationships within a social 
network comes into play, higher trust indicated by the authority of 
the site [21]. Each blog will be assigned a rank, similar to that of 
the PageRank score given to websites on Google [13]. This rank 
will represent a blog’s level of trustworthiness. Hence, the results 
of a keyword search will be sorted such that those sites with the 
highest rank are situated at the top of the search results, ensuring 
the most relevant and trustworthy hits are the first ones the user 
sees. 

There are several components implemented for such a 
solution. Those are a web crawler, a ranking module to calculate 
the expert level of blogs, and a front-end user interface for the 
user to access when performing search queries. Figure 2 outlines 
the architecture of the system. 

 
Figure 2: System Architecture 

4.2 Software 
BlogCrawler is implemented in Java, including a Java Server 

Pages (JSP) application for the front-end web-based search 
engine. Java was chosen for a variety of reasons, including the 
fact that it is cross- platform compatible, allowing all types of 
machines to use the same code base. This simplifies the task of 
ensuring that the code can run on the widest range of machines as 
possible. In addition, the standard Java library also includes tools 
to easily connect to, retrieve, and tokenize HTML web pages, 
which is helpful in the implementation of the search engine. 

Another deciding factor to use Java was also the decision to 
use the Apache Lucene library, a full-featured text search engine. 
Lucene allows developers to efficiently store and search large 
amounts of any type of data, including web sites. Since a large 
portion of the project involves performing keyword searches on 
text, it was felt that using Lucene would ensure the overall 
efficiency of the system. Because the engine is written entirely in 
Java, and the fact that every element of the project would need to 
access the index, it was felt that the use of Java was the most 
appropriate choice of environment. 

4.3 Web Crawler 
The web crawler is responsible for gathering the blogs which 

we want to search and is the most complex component in the 
system. Unlike standard web crawlers, the requirements of the 
system mean that it cannot blindly follow every single link on a 
blog. Since the blogosphere is only a subset of the greater World 
Wide Web and individual blogs often post links to sites that are 
not blogs, doing so would lead to a massive amount of web sites 
crawled that are outside the scope of our search parameters. 
Clearly, the web crawler needs to be intelligent enough to crawl 
only those sites we want. To solve this issue, the crawler needs to 
be equipped with a validation module that verifies whether or not 
a web page is a blog. Only if the validation determines that a page 
is a blog will it allow the crawler to index the site. The end result 
should be that only those sites situated within the blogosphere will 
be searched. 

The basic algorithm for web crawling is a simple one. 
Simply access a site, store its contents in the index, extract the 
links on the site, and recursively crawl those links. Note, however, 
that due to the nature of the web, actually using a recursive 
algorithm would create an exponential number of instances of the 
crawler. We can easily solve this problem by using a queue 
instead as seen in Algorithm 1 [1]. 

 

 
Figure 3: Algorithm 1 

As we noted earlier, we cannot follow every single link. 
There are several issues when programming a web crawler that we 
need to be cognisant of. First, we need to ensure that the web 
crawler does not continue to run for an indeterminate amount of 
time. This is a distinct possibility with millions of blogs on the 

663



web online today and the number of web hosts doubling every 
year. To resolve this issue, we simply need to limit the depth that 
our web crawler will crawl. For example, assume that the initial 
list of blogs we crawl represent depth zero. Then every blog 
linked from those at depth zero would be depth one, those linked 
from depth one will be depth two, and so on. Therefore, we 
simply place a condition on our crawler to stop indexing blogs 
that exceed a user-defined depth. 

The second issue we need to address is that of ensuring that 
only blogs are crawled. We must remember that the blogosphere 
is not self-contained within the World Wide Web since blogs not 
only link to other blogs, but to other websites that we do not want 
to index. If we allow the crawler to exit the blogosphere into the 
greater web, then the chances are slim that the crawler will return 
to where we want it to. This problem can be addressed by 
validating each page the crawler retrieves before indexing it. If the 
page validates as a blog, then the crawler will index it, extract the 
links on the page, and continue crawling. If it does not validate it, 
the crawler will ignore the page. Section 4.4 goes into further 
details on how the validation works. 

Finally, we need to ensure that we do not index pages 
multiple times, since most blogs, and web pages for that matter, 
maintain a many-to-many link relationship with other blogs. This 
is resolved by maintaining a list of websites already crawled and 
skipping those links which lead to previously traversed pages. 

From our basic algorithm, then, we now have a more 
intelligent and efficient crawling algorithm, as seen in Algorithm 
2. 

 
Figure 4: Algorithm 2 

Looking at each individual blog to be indexed, we now have 
to determine what properties of an individual blog we need to 
store. We have already mentioned that we will be using the 
Lucene library to index the pages that we crawl. As part of its 
implementation, Lucene allows us to index any number of fields 
with whatever content we wish. The obvious fields to index are 
the ones the end-user is interested in, namely the address, title, 
and contents of the page. These are not the only things that need 
to be indexed, since we also need to store attributes that relates the 
page to its position within the social network. Our discussion of 
social networks identified two key aspects of blogs that we are 
interested in. Firstly, we need to know what other blogs the page 
is connected to. To that end, we also index the complete list of 
outgoing links contained on the page. Secondly, we need to know 
the rank of the page to determine which blogs are the most 
trustworthy. Therefore, we will also index the page’s rank. Since a 
page’s rank is dependent on the rank of other pages in the index, 

we will not be able to calculate the rank during the web crawl, so 
we index the page with an initial rank of zero. All of this is 
accomplished with the PageIndexer. 

Now that we have the overall structure of the crawler module 
designed, we turn to ensuring that the module is as efficient as 
possible. Like any algorithm that we design, we are particularly 
concerned with time and speed efficiency and memory usage. In 
both cases, implementing the web crawler created many 
challenges in ensuring that our algorithm was as efficient as 
possible. 

With respect to speed efficiency, we needed to ensure that 
crawler indexed as many pages as possible in a minimal amount 
of time. Particularly troublesome was the fact that as the crawler 
traversed deeper into the network, the number of links queued to 
crawl grew exponentially in the same way that the number of 
leaves on a tree grows exponentially at each height. A high 
performance data base was used to store the results for each page 
crawled. 

 

4.4 Blog Validator 
To validate whether a site is a blog or not, we created a 

BlogValidator which is designed to filter out unwanted sites. We 
accomplish this by recognizing the fact that blogs share common 
formatting characteristics, including a consistent sequence of date-
entry pairs [13]. Particularly, we note that the date on each entry is 
consistently formatted in terms of date expression (such as 
“dd/mm/yy”) and formatting style (such as font size, bolded). The 
validator takes advantage of this by analysing the structure of an 
HTML document, extracting the dates on the page and 
determining if the sequence of dates consistent with that of a blog. 
Specifically, the validator determines that a site is a blog if and 
only if: 

 
1. There exists a sequence of dates, spaced out by a 

user defined minimum number of characters. 

2. The sequence of dates is ordered in ascending or 
descending order. 

3. The HTML tag sequence surrounding each date 
instance is uniform for all entries in the sequence. 

To accomplish this, the BlogValidator extracts all the dates 
on a page that match one of a number of predefined regular 
expressions. If a date follows another date within a specified 
number of characters, however, it is ignored. Once extracted, the 
dates are sorted into bins based on the regular expression that the 
date matches. For example, the dates “2005/02/14” and 
“2004/12/01” would go in the same bin, having matched against 
the date format “yyyy/mm/dd”. The bins are then further split by 
the HTML tag sequence the date was found in. For example, a 
date may be found following a tag sequence of 
“<div><span><p>”. We then take the largest list of dates, and 
assume that the list represents the sequence of date entries for the 
articles on the potential blog. If those entries are found to be in 
ascending or descending order, then the page is determined to be a 
blog and the validator returns true. 

Using this algorithm, we are able to detect blogs produced by 
any type of blog software and presented using any type of 
template. While thought was given to simply using a precompiled 
list of “acceptable” blogs, this approach of determining whether a 
page is a blog in real-time allows for much more flexibility in 
discovering lesser-known blogs. In fact, as will be discussed in 

664



Section 4.1, this algorithm is remarkably successful in identifying 
blogs. 

4.5 Page Ranker 
After we use our web crawler to extract and index the blogs 

were are interested in, we now turn to ranking the blogs to ensure 
that the most important ones are given the most weight when 
performing keyword searches. Doing this prevents blogs that are 
relatively new and those that are unpopular from being returned 
ahead of the blogs that the end-user actually wants to see. We 
accomplish this by assigning a rank to each blog which represents 
its relative importance or trust level compared to other sites in the 
index. When performing a keyword search, blogs with higher 
rankings will appear first in the results listing, followed by those 
with lower ranks. This is not a new concept, as demonstrated by 
Google, which returns search results based on the rank of a page 
calculated by the highly successful PageRank algorithm [2]. So, 
rather than create our own algorithm, we will use a modified 
version of the PageRank algorithm to calculate the ranks for the 
blogs in our index. 

PageRank is premised on the idea that the more important a 
web page is, the more other pages will link to it. Therefore, the 
more links to a page, the higher its rank is and the higher its 
importance. Mathematically, PageRank begins by assigning each 
page an initial rank of 1/N, where N is the number of pages in the 
index. Let Nu be the out degree, or number of outgoing links, on 
page u, and let Rank(p) be the rank of a page p. Also, let Bv be the 
set of all pages with a hyperlink to page v. The rank of a page, v, 
at iteration i is calculated as follows: 

€ 

Ranki+1(v) = Ranki(u)
u∈Bv

∑ /Nu  (1) 

Since the rank of a page is dependent on the rank of others, 
we iterate through all of the pages in the set of pages until the 
ranks stabilize to within a specified threshold. The rank vector 
that is calculated from this formula is calculated once and the 
results are used for every search query. 

The PageRank algorithm, however, is susceptible to the 
problem of assigning pages with little actual authority a high rank 
simply because the page was heavily linked to (see [5]). This is a 
problem if we want to generalize keyword searches as much as 
possible while maximizing the relevancy of the search results. To 
overcome this obstacle, we bias the rankings by creating a “topic-
sensitive” PageRank. As Haveliwala argues in [5], biasing the 
page ranking towards specific pages allows for personalization in 
the ranking. In this case of BlogCrawler, we will personalize the 
rankings so that blogs which we deem are experts or important 
will bias the ranking of all the blogs in the index towards them. 
Take the example of someone searching political blogs. If a user 
is specifically interested in conservative blogs, then it would make 
the most sense to bias the rankings towards those sites which 
present a conservative viewpoint. If the user is interested in liberal 
blogs, then using same index, the user can bias the rankings 
towards those blogs with a liberal viewpoint. This allows us to 
further narrow the search results to what the end-user wants. 

Biasing the ranking algorithm is actually quite simple. 
Essentially, we want to ensure that those blogs which the user 
finds important have high scores. To do this, we modify the initial 
rank given to a page, such that a page has a rank of 1 if it is in the 
list of “expert” blogs, and a rank of 0 if the blog is not in the list. 
On each iteration, the PageRank is calculated as outlined in (1). 
The difference is that on each iteration, the initial rank given to 
the expert blogs is further diffused across the entire network, 

meaning that a blog’s ranking is almost entirely dependent on its 
proximity to an expert blog. 

Implementing this algorithm using the Lucene index is 
simply a matter of updating the appropriate rank field for each 
blog in the index. One final issue that needs to be resolved is that 
often times, there will be multiple pages from the same blog site 
indexed. To ensure that these internal linkages do not affect the 
final rank of a blog, we exclude outgoing links that point to pages 
on the same web host when calculating the rank. Once the ranks 
are calculated the index is now ready for keyword searching via a 
web-based search engine. 

4.6 User Interface 
To the end-user, searching through the blogs we have 

crawled should be as simple as using any other search engine. 
Modelled after a standard search box Figure 5 shows what the 
BlogCrawler search box looks like. The common element 
necessary present is a text box to enter the keywords the user 
wishes to search for. To search for information, all the user is 
required to do is enter his or her search query in the textbox, click 
Search and, as seen in Figure 6, wait for the search engine to 
display a list of appropriate blogs. Also present are two options to 
further refine the query. The user is able to enter a variety of 
keywords, separated by a space. Selecting “All Terms” will search 
through the index for items containing all of the keywords entered 
in the text box. Selecting “Any Terms” will return items that 
contain one or more of the keywords entered. In any case, if 
results are found, the search engine will return a sorted list of 
blogs, complete with an excerpt from the blog that matches the 
keywords entered. 

 
Figure 5: User Interface 

5. RESULTS 
With implementation of BlogCrawler complete, we now 

move to evaluating the system. Recall that in the original problem 
statement, we wanted to know if it were possible to use the 
inherent social networking properties of blogs so that relevant hits 
would be returned using a generalized search query. Based on 
these parameters, we will focus on two main issues. We will first 
look at the web crawler’s effectiveness in extracting the blogs we 
want, while filtering out everything else. Success in this regard is 
paramount since the success of the system requires that we 
actually have blogs to search from. Secondly, we will look at the 
actual results of keyword search queries performed on the index 
of blogs we constructed. We will determine whether or not we can 
retrieve relevant results from generalized queries and, if this is the 
case, relate this back to the idea of social networks. 

5.1 Crawler Effectiveness 
The web crawling portion of the BlogCrawler system can be 

evaluated in terms of two criteria. Firstly, how efficient was the 
actual crawling process. For this criterion, we can look at how fast 
web sites are crawled, and examine where the bottlenecks were 
during the crawling process. The second criterion is the accuracy 

665



of the validator and whether or not we were successful in 
extracting only blogs. 

In terms of the efficiency of the crawler, we were successful 
in producing a web crawler that maintained a consistent rate of 
operation in that regardless of how long the system was running, a 
web page was examined at least once every 10 seconds. Our 
crawler was able to index 1480 Canadian political blogs over the 
course of 2 days, not including sites that were rejected by the blog 
validator. This equates to approximately 30 blogs indexed per 
hour. While this performance rate is not poor, we were hoping to 
increase the rate of crawl. Section 5 outlines potential 
improvements that we can make to increase the web crawler’s 
efficiency. 

 
Figure 6: Search Results 

Accuracy is the second criterion in which we can evaluate 
the web crawler. Indeed, for all other aspects of the system to 
work, we need to be confident that the sites being indexed are 
actually blogs. In this regard, we were very successful in 
implementing a validation module that more often than not, 
correctly identified web pages as blogs. These blogs include those 
based on standardized templates (e.g., 
http://calgarygrit.blogspot.com), and custom designed templates 
(e.g., http://www.freethought.ca). Using our list of blogs crawled, 
a random sample of 50 blogs revealed the validator incorrectly 
identified 4 web pages as blogs. In one case, there would be no 
easy way beyond natural language analysis to determine that the 
site was not a blog. That gives us a success rate of 94%, which for 
our purposes is more than adequate. Further random sampling 
generated similar results. 

For the most part, then, our web crawler was successful in 
giving us a good base of blogs to analyze and search upon. 
Specifically, we were able to crawl a significant portion of the 
blogosphere that we were interested in. 

5.2 Relevance of Search Results 
Given that we have an acceptable base of blogs to search 

from, we now turn to evaluating the actual search results returned 
from BlogCrawler. In Section 1.3, we discussed how generalized 
search queries were inadequate in narrowing the scope of the 
returned results. Consequently, when we evaluate the 
effectiveness of our system, we need to look at how relevant the 
returned results are when using very general keywords. The main 
example used in this paper has been Canadian political blogs, so 
we continue to use this example in our evaluation of BlogCrawler. 
In our sample index, we begin by feeding two Canadian political 
sites (http://www.freethought.ca and 
http://calgarygrit.blogspot.com) into the web crawler and then 
allow it to run for two days. Afterwards, we rank the blogs using 
the two previously mentioned blogs to bias the rankings, then run 
the Updater module to ensure that all the pages in the index are 
recent. Finally, we perform various keyword searches using the 
BlogCrawler web application. For the purpose of comparison, we 
will also examine the results returned by the blog search engine 
Technorati (http://www.technorati.com) using the same keyword 
query. 

Let us first examine a search on the keyword “budget”, 
which happens to be a very general keyword that can apply to 
many situations. To satisfy the requirements of the system, we 
would like to only receive blogs that discuss issues surrounding 
the federal budget, an item prominent in the public consciousness 
at the time writing. More specifically, on March 31, 2005, when 
the historical search was run, the main issue was the federal 
government’s decision to include environmental protection 
measures in the bill approving the budget. We therefore, would 
expect that the returned blogs would be discussing this issue. 
After running a search on BlogCrawler for the keyword “budget”, 
we see that the returned blogs do discuss this issue for the most 
part. In contrast, a keyword search for “budget” on Technorati 
returns a plethora of blogs, with no consistent topic of 
conversation. Figures 7 and 8 show the results of the two search 
engines, while Table 2 summarizes the main topics of the top 10 
hits returned by both search engines. Searching for another 
keyword, in this case “senate”, we now expect to retrieve blogs 
that have information regarding the appointments to the Canadian 
Senate that occurred in March 2005. BlogCrawler again provides 
the results we expect as Table 3 demonstrates. Hence, we can 
conclude that by feeding a specific type of site into the web 
crawler as the root node in the social network, and following the 
links to other blogs, we are able to restrict the search engine to a 
specific topic without needing to enter clarifying keywords in the 
search query. 
Table 2: Topics of Top 10 Hits for "budget" Keyword Search 

 

666



 Figure 7: Results Returned for BlogCrawler 

 
Figure 8: Results Returned for Technorati 

 
We also discussed the idea that blogs returned from searches 

should also be trustworthy. From our analysis of social networks, 
we concluded that if we rank blogs based on the number of links 
to it, then we should be able to order our collection of blogs by 
relative importance within the greater blogosphere. Since our 
search engine sorts hits by the rank of a blog, this leaves us to 
show that the actual page ranks calculated by BlogCrawler are 
accurate. Qualitatively, we see that the rankings calculated by 
BlogCrawler, supplemented by the biasing discussed in Section 
4.5 appear to reflect this idea. Indeed, the sites we deemed 
“expert” blogs when calculating the page ranks all appear at or 
near the top of the ranked list of blogs contained in the index. We 
also note that the problem of the BlogValidator incorrectly 
identifying sites as blogs is overcome by the fact that those sites 
tend to have low page ranks relative to actual blogs. 

 

Table 3: Topics of Top 10 Hits for "senate" Keyword Search  

 
 

5.3 Overall Results 
Based on the results we have observed, we can safely 

conclude that BlogCrawler is successful in implementing a 
solution demonstrating the properties of the blogosphere and the 
power that social networks have. This is not to say that the system 
is ideal, as will be discussed in the following section. However as 
a prototype, BlogCrawler was able to provide us with quite 
accurate and very relevant hits on our generalized keyword 
queries. The system was also able to rank blogs according to our 
personal preferences as defined by the blogs we used to bias the 
page rank calculations. As a basis for evaluating the use of social 
networks within the application of searching, the algorithms 
succeeded. 

6. CONCLUSIONS  
As we noted in the opening of this paper, blogs are 

increasingly being used by a variety of users in the field of media 
analysis. Blogs inherently express the thoughts of the public at 
large, so the importance of knowing what is being said on the 
many blogs on the Internet is important. With this comes the 
requirement to be able to search for what types of views we want 
in a more efficient fashion than is usually used. Indeed, unlike 
searching for a particular piece of information, looking for a 
specific string of text, media analysis requires people to look for a 
specific topic, but any type of viewpoint. Searches like this 
require the use of more general keyword queries, which we 
showed earlier to be cumbersome in terms of the amount of 
irrelevant sites the user would have to filter out. Therefore, this 
paper ultimately needed to answer two questions. First, do blogs 
exhibit properties of a social network? Secondly, can we use these 
properties to provide a level of human intelligence to search 
results while keeping the actual searching process simple? With 
BlogCrawler successfully implementing a solution that satisfies 
our requirements we can conclude several things regarding blogs 
in particular and social networks in general. 

First, we can conclude that the blogosphere does constitute a 
social network with its interconnected set of hyperlinks and 
references. As our web crawler demonstrated, given any blog, its 
set of outgoing links linked it to other blogs of the same type, 
exhibiting the property of clustering, forming a community 
structure of blogs. The cluster of blogs we crawled all tended to 
be focus on the same issues, even if the opinions and viewpoints 
expressed on them differed. Moreover, we observed that the set of 
hyperlinks from one blog to another exposed embedded trust 
relationships in the blogosphere, with the most important and 
trustworthy blogs being linked to the most. Blogs clearly do 
constitute a social network. 

667



From our experimental search results, we also can conclude 
that using social networks in a searching application can make the 
search process much more efficient. By limiting the search engine 
to a specific cluster of blogs, we see that effectively filter out 
irrelevant blogs that we would normally have had to filter out 
using contextualizing keywords. This also limits the numbers of 
blogs to only those with some level of authority since blogs that 
no one reads or trust will hardly ever be linked to. Social 
networks, then, add a modicum of human intelligence into the 
search process by recognizing and leveraging the human efforts 
made when constructing the social network in the form of linking 
to other blogs. 

Interestingly, the conclusions we have found through our 
analysis of the blog social network also means that communities 
of blogs can be hierarchical. Blogs that focus on Jazz music form 
their own social networks, but may fall under a more general 
category of music blogs. Indeed, we would go so far as to say that 
the entire blog community may be hierarchical – using ontologies 
and intelligent agents to analyze and categorize individual blogs it 
is entirely possible to generate an overall blog network topology 
[6]. We have already seen in a simple manner how we can use the 
inherent organization of social networks to aid us in implementing 
practical applications for common problems. Knowledge of how 
the entire blogosphere is structured would, therefore, bring many 
benefits. We also believe that ideas from Referral Networks [20] 
can further enhance the properties of the system described here by 
dynamically restructuring the neighbourhood of blogs used in 
search process.  

In all facets of life, we use social networks because we 
recognize that the relationships we build with others are valuable 
and useful. In the world of Computer Science, social networks 
allow us to add a human element to networking problems by 
recognizing the inherent organization structure social networks 
provide and realizing that there is information imparted whenever 
we decide to connect one resource to another. The common 
problem with searching is often that our search engine is not 
intelligent enough to recognize what we want. As we have seen 
with the BlogCrawler project, by using social networks, search 
engines can be intelligent enough to ensure that we are always 
satisfied by what we get back. 
7. REFERENCES 
[1] Blom, Thom et. al. (1998) Writing a Web Crawler in the 

Java Programming Language. Retrieved 12 September 2009 
http://java.sun.com/developer/technicalArticles/ThirdParty/
WebCrawler/. 

[2] Eiron, Nadav et. al. (2004) “Ranking the web frontier,” 
Proceedings of the 13th international conference on World 
Wide Web, pp. 309-318. 

[3] Girvan, M. and Newman, M.E.J. (2002) “Community 
structure in social and biological networks,” Proceedings of 
the National Academy of Sciences, Volume 99, Issue 12, pp. 
7821-7826. 

[4] Google (2009) Google. Retrieved 30 October 2009 from 
http://www.google.com. 

[5] Haveliwala, Taher H. (2002) “Topic-Sensitive PageRank,” 
Proceedings of the 11th World Wide Web conference, pp. 
517-526. 

[6] Heflin, Jeff (2004) OWL Web Ontology Language Use Cases 
and Requirements. Retrieved 4 April 2009 from 
http://www.w3.org/TR/webont-req/. 

[7] Henzinger, Monika. (2000) “Link Analysis in Web 
Information Retrieval,” Bulletin of the IEEE Computer 
Society Technical Committee on Data Engineering.  

[8] Herring, Susan C. et. al. (2004) “Bridging the Gap: A Genre 
Analysis of Weblogs,” Proceedings of the 37th Hawaii 
International Conference on System Sciences. 

[9] Herring, Susan C. et. al. (2005) “Conversations in the 
Blogosphere: Analysis ‘From the Bottom Up’,” Proceedings 
of the 38th Hawaii International Conference on System 
Sciences. 

[10] Kleinberg, Jon (1999) “The Small-World Phenomenon: An 
Algorithmic Perspective,” Proceedings of the 32nd Annual 
ACM Symposium on Theory of Computing, pp. 163- 170. 

[11] Krishnan, Sriram (2004) Writing a web crawler. Retrieved 
15 November 2009 from 
http://dotnetjunkies.com/WebLog/sriram/archive/2004/10/10
/28253.aspx. 

[12] Lindahl, Charlie & Blount, Elise. (2003) “Weblogs: 
Simplifying Web Publishing,” Computer, Volume 36, Issue 
11, pp. 114 -116. 

[13] Nanno, Tomoyuki et. al. (2004) “Automatically Collecting, 
Monitoring, and Mining Japanese Weblogs,” Proceedings of 
the 13th international World Wide Web conference, pp. 320-
321.  

[14] Nardi, Bonnie A. et. al. (2004) “Blogging as Social Activity, 
or, Would You Let 900 Million People Read Your Diary?” 
Proceedings of the 2004 ACM Conference on Computer 
Supported Cooperative Work, pp. 222-231. 

[15] Newman, M.E.J. (2001) “The structure of scientific 
collaboration networks,” Proceedings of the National 
Academy of Sciences, Volume 98, Issue 2, pp. 404-409. 

[16] Rodrigues, Maira Ribeiro et. al. (2003) “A System of 
Exchange Values to Support Social Interactions in Artificial 
Societies,” Proceedings of the Second Annual International 
Joint Conference on Autonomous Agents and Multiagent 
Systems, pp. 81-88. 

[17] Slashdot (2009) Slashdot. Retrieved 13 December 2009 from 
http://slashdot.org. 

[18] Technorati (2009) Technorati. Retrieved 14 December from 
http://www.technorati.com. 

[19] Wellman, Barry (1996) “A Sociological Perspective on 
Collaborative Work and Virtual Community,” Proceedings 
of the 1996 ACM SIGCPR/SIGMIS Conference, pp. 1-11. 

[20] White, T., McQuaker, S., Salehi-Abari, A., (2008) “On the 
importance of relational concept knowledge in referral 
networks. Artificial Intelligence Review Vol. 29, Issue 3-4 
pp. 287-303. 

[21] Kleinberg, J.M. (1999) “Authoritative sources in a 
hyperlinked environment”, Journal of the ACM, 46(5) pp. 
604-632. 

668


