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ABSTRACT 
This paper begins by reviewing different methods of automatic 
programming while emphasizing the technique of Ant 
Programming (AP). AP uses an ant foraging metaphor in which 
ants generate a program by moving through a graph. Generalized 
Ant Programming (GAP) uses a context-free grammar and an Ant 
Colony System (ACS) to guide the program generation search 
process.  There are two enhancements to GAP that are proposed 
in this paper. These are: providing a heuristic for path termination 
inspired by building construction and a novel pheromone 
placement algorithm. Three well-known problems -- Quartic 
symbolic regression, multiplexer, and an ant trail problem -- are 
experimentally compared using enhanced GAP (EGAP) and GAP. 
The results of the experiments show the statistically significant 
advantage of using this heuristic function and pheromone 
placement algorithm of EGAP over GAP.  

Categories and Subject Descriptors 
I.2.2 [Computing Methodologies]: Artificial Intelligence – 
program modification, program synthesis. 

I.2.11 [Computing Methodologies]: Distributed Artificial 
Intelligence – Intelligent agents. 

General Terms 
Algorithms, Performance, and Design. 

Keywords 

Automatic Programming, Ant Programming, Heuristic, 
Generalized Ant Programming, Enhanced Generalized Ant 
Programming. 

1. INTRODUCTION 
Automatic programming is an active research area that has 
stimulated by the Genetic Programming (GP) technique. In 
automatic programming, the goal of the desired program is first 
specified; then, based upon this goal, programs are generated 
according to an algorithm and tested to demonstrate to what 
extent they satisfy the desired goal. Genetic programming (GP), a 
method of automatic programming, was proposed by Koza [9-11]. 
GP utilizes an idea similar to that of a genetic algorithm (GA) but 

with representational and operator differences. GP represents 
genes in a tree structure as opposed to an array of numbers 
typically used in a GA. As a consequence of this representation, 
there are some other differences in the mutation and crossover 
operator of GP in comparison to GA.  
According to Koza [9], there are five preparatory steps which 
should be completed before searching for a program: selecting of 
terminal symbols, choice of functions, fitness function 
specification, selection of certain parameters for controlling the 
run, and defining the termination criteria. Hence, an automatic 
programming approach can be any search method which has the 
ability to do these five steps before searching. 
While search algorithms inspired by evolution have demonstrated 
considerable utility, other learning models are attracting 
increasing interest. One model of social learning recently 
attracting increasing attention is Swarm Intelligence (SI). There 
are two main classes of algorithm in this field: ant colony system 
(ACS) and particle swarm optimization (PSO) [1]. The former is 
inspired by the collaborative behavior of ants in finding food. The 
latter is derived from the flocking behavior of birds and fish and 
is often utilized in optimization problems. Both ACS and PSO 
exhibit flexibility, robustness and self-organization [1].  
ACS and PSO have been used in Automatic Programming. 
O’Neill and Ryan present an automatic programming model 
called Grammatical Swarm (GS) [12, 13]. In this model, each 
particle or real value vector represents choices of program 
construction rules specified as production rules of a Backus-Naur 
Form (BNF) grammar. In other words, each particle shows the 
sequence of rule numbers by applying which a program can be 
constructed from the starting symbol of the grammar. GS is based 
on the linear Genetic Programming representation adopted in 
Grammatical Evolution (GE) [14] that uses grammars to guide the 
construction of syntactically correct programs. 
O’Neill and Ryan describe several advantages of a grammatical 
approach to genetic programming [14], including the ability to 
encode multiple data types into the solutions generated as 
opposed to tree-based GP in which type information is typically 
absent. That is, the non-terminal symbols within a grammatical 
approach provide the capability for developing programs with 
multiple data types like strings, integers, booleans and so on. 
Moreover, it is simply possible to encode the knowledge domain 
into the grammar which can be employed to bias the construction 
of solutions and also any changes to the language of constructed 
program easily can be made by modifying the grammar. 
Furthermore, this approach is language independent. 
Other researchers have used ACS for automatic programming. 
Roux and Fonlupt [15] use randomly generated tree-based 
programs. A table of program elements and corresponding values 
of pheromone for these elements is stored at each node. Each ant 
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builds and modifies the programs according to the quantity of an 
element’s pheromone at each node. The higher concentration of 
pheromone one element has, the higher probability it has for 
selection. This approach met with limited success. 
Boryczka and Czech have presented two other models of Ant 
programming [3, 4, 5 and 6]. They used their model only for 
symbolic regression. In the first approach called the expression 
approach, they search for an approximating function in the form 
of an arithmetic expression written in Polish (Prefix) notation. 
They create a graph whose nodes are either an arithmetic operator 
or a variable. When an ant goes through these nodes and edges, 
the expression is constructed by selecting the nodes visited. Ants 
put pheromone on the edges based on the fitness of expression in 
order to lead other ants to the specific solutions. In the second 
approach, the desired approximating approach is built as a 
sequence of assignment instructions which evaluates the function. 
In other words, there is a set of assignment instruction defined by 
the user; each of these assignment instructions is placed on a node 
of graph. Then, ants build their program by selecting the sequence 
of these instructions while passing through the graph. 
Both expression and instruction approaches showed promise but 
they are only applicable to regression or function approximation, 
they cannot generate more general types of program. Another 
drawback of these approaches is the existence of introns in the 
resulting program. Some solutions for these introns are presented 
by Boryczka [7]. 
Keber and Schuster offer a new AP model using a context-free 
grammar and an ant colony system. They use this model in 
function approximation for the purpose of option valuation [8]. 
They called it Generalized Ant Programming (GAP) because they 
believe that it is applicable to all problems in which the search 
space of solutions consists of a computer program. In spite of 
their claim, they did not test this approach for anything except 
symbolic regression. The lack of termination condition for 
generating the path by each ant and generating paths with non-
terminal components cause GAP to have the weak performance in 
some domains. 
The main contributions of this paper are the introduction of a new 
heuristic function for program generation and a different method 
of pheromone placement for GAP. We have compared the 
performance of the new algorithm with GAP on 3 problems: 
Quartic symbolic regression, multiplexer and Santa Fe ant trail. 
The results obtained demonstrate a statistically significant 
improvement. 
The remainder of the paper is structured as follows. In section 2, 
the GAP algorithm is presented in some detail. Section 3 
highlights areas for improvement in GAP and describes the 
enhanced GAP (EGAP) algorithm. Section 4 details the 
experimental approach adopted and results. Finally, Section 5 
provides conclusions and opportunities for future work. 

2. GENERALIZED ANT PROGRAMMING  
2.1 Introduction 
Generalized Ant Programming (GAP), introduced by Keber and 
Schuster, is a new method of Automatic Programming. This 
method is inspired by GP and ACS. GAP is an approach designed 
to generate computer program by simulating the behavior of ant 
colonies; specifically, reinforcement through pheromone 

deposition. That is, when ants forage for food they lay pheromone 
on the ground that affects the choices they make.  Ants have a 
tendency to choose steps that have a high concentration of 
pheromone. Pheromone trails can be seen as common information 
that is modified by ants to show their experience while solving a 
given problem. 

2.2  Methodology 
GAP uses artificial ants to automatically generate computer 
programs. By analogy to real ants, artificial ants explore a search 
space including the set of all feasible computer programs. The ant 
generates a program by moving along a specific path in the graph. 
The amount  of pheromone deposited by an ant is proportional to 
the quality of the solution found by that ant. The quality of a path 
is measured using the fitness function which will be described in 
the next few paragraphs. 
All computer programs are written in a well defined programming 
language. In GAP, ࣦ ሺ࣡ሻ is the programming language in which 
an automatically generated program is written and it is specified 
by the context-free grammar ࣡ ൌ  ሺࣨ, ,݉ݎ࣮݁ ࣬, ࣭ሻ. In other 
words, ࣦ ሺ࣡ሻ is a set of all expressions that can be produced from 
a start symbol ࣭ under application of ܴ rules, a set of non-
terminal symbols ࣨ, and a finite set of terminal symbols, ࣮. 
Thus, 

ࣦሺ ࣡ሻ ൌ ሼ ࣪ | ࣭ ֜ ࣪ ר א ࣪   ሽ    (1)כ݉ݎ࣮݁

Where ࣮݁כ݉ݎ represents the set of all expressions that can be 
produced from the ࣮erm symbol set. Given the grammar ࣡, a 
derivation of expression ࣪ א ࣦሺ ࣡ሻ consists of a sequence of 
,ଵݐ ,ଶݐ … ,   of terminal symbols generated from the sequence ofݐ
derivation steps. This derivation is denoted by 

࣭ 
כ

֜  ࣪     (2) 

Assume the following  ࣡ 
࣡ ൌ  ሺࣨ ൌ ሼܵ, ܶ,    ,ሽܨ
݉ݎ࣮݁             ൌ ሼܽ, ,כ, ሺ, ሻሽ,   
            ܴ ൌ ሼܵ ՜ ܵ  ܶ|ܶ, ܶ ՜ ܶ כ ,ܨ|ܨ ܨ ՜ ሺܵሻ|ܽሽ,  
           ࣭ ൌ ሼܵሽሻ  
Each derivation in this grammar represents a simple arithmetic 
expression including the symbols ܽ, ,כ, ሺ, and ). The simple 
derivation of this grammar is presented below: 

ܵ ֜ ܵ  ܶ ֜ ܶ  ܶ ֜ ܨ  ܶ ֜ ܽ  ܶ ֜ ܽ  ܶ כ    ܨ
    ֜ ܽ  ܨ כ ֜ ܨ ܽ  ܽ כ ֜ ܨ ܽ  ܽ כ ܽ   

In GAP, ࣦ ሺ࣡ሻ is the search space of all possible expressions 
(programs) that can be generated by the grammar ࣡, ࣪ א ࣦሺ࣡ሻ is 
a path which can be visited by one ant and it is an expression (a 
program) and ࣤሺݐሻ ؿ ࣦ is a set of all paths already visited at time 
א ࣪ Furthermore, each path .ݐ ࣦሺ࣡ሻ consists of a sequence of 
terminal symbols 1ݐ, ,2ݐ … ,  and the corresponding derivation ݐ
step ݐ ՜ ݅ ݎାଵ ሺ݂ݐ ൌ 1, … ,  െ 1ሻ that cause the generation of 
the terminal symbols 1ݐ, ,2ݐ … ,  ,from the start symbol ܵ. Thus ݐ
each path  א ࣤሺݐሻ can be seen as a derivation: 
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ܵ 
כ

    (3) ֜
Let us return to the previous example to illustrate these 
explanations further. Suppose that an ant is in the starting symbol 
S, then it will have two choices, either select the first rule  
ܵ ՜ ܵ  ܶ or the second rule ܵ ՜ ܶ. By selecting the first rule, 
the ant‘s expression will be ܵ   ܶ and the ant should now seek to 
make a substitution for S again; this process continues until the 
complete path is formed in the graph. It is worth noting that the 
graph in this model is a tree. Figure 1 shows the starting part of 
this tree. 
In Figure 1, the text inside each oval shows the current expression 
which ants have generated by moving through the tree and 
selecting the corresponding rules. The numbers on the edges show 
the rule’s number which is applied for the first non-terminal 
symbol in the previous oval. For instance, to create the expression 
ܽ , the ant should first select the second rule of ܵ then the 
resulting expression will be ܶ and then by selecting the second 
rule of ܶ, i.e. ܶ ՜  and finally ܨ the  expression is changed to ,ܨ
the second rule of ܨ ሺܨ ՜ ܽሻ will result in the expression ܽ. 
Considering another example, the sequence rules of “1-2-1” can 
lead the expression of an ant to become ܨ כ ܶ  ܶ. Thus, the 
sequence of numbers determines the final expression of an ant. 
Ants select their path in this tree according to the amounts of 
pheromone deposited by the other ants on the tree.  In GAP, all 
derivation steps in the path get an equal amount of pheromone 
while an ant puts pheromone on the path.1 
The amount of deposited pheromone is stored in the T table. The 
T table is a hash table that consists of the string key indicating the 
rule numbers that have been selected by ants to reach this edge 
and also consist of the amount of pheromone deposited on this 
edge. For instance, in Figure 1, for the edge between oval ܨ and 
oval ܽ, the “2-2-2” key can be used. To lookup the amount of 
pheromone for one edge, if the key of that edge exists in the T 
Table, the corresponding value will be returned otherwise the 
initial value of pheromone ሺ ܶ) will be returned.2 
The amount of pheromone in T table at time t is update by: 
                                                                 
1 In section 3, the proposed method discriminates the amount of 

pheromone in each edge. 
2 These explanations about T table are not mentioned by the GAP 

algorithm. 

ܶሺݐሻ ൌ ሺ1 െ ሻ כ ܶሺݐ െ 1ሻ  ∆ܶሺݐሻ  (4) 

Where 0 ൏   1 is the coefficient representing pheromone 
evaporation, and 

∆ܶሺݐሻ ൌ   ∆ ܶ



ୀଵ

ሺݐሻ 

is the pheromone increase obtained by accumulating the 
contributions  ∆ ܶሺݐሻ of each ant ݇ ൌ 1, … ,  In other words, this .ܭ
is the amount of pheromone deposited on some edges of tree by k 
ants at time t. This quantity of pheromone is given by: 

∆ ܶሺݐሻ ൌ  ൜ܳ. ,ݐሺܮ ሻ    ݂݅ k୲୦ ant pass edge e
                     ݁ݏ݅ݓݎ݄݁ݐ                     0

 

Where Q is an experimental constant and ܮሺݐ,  ሻ is the value of
the objective function obtained by ant k at time t. The expression 
found by ants can be seen as a function : ࣟ ՜  transforming ܣ
input data ࣟ into a solution or output data ܣ. Therefore, the 
function ܮ: ܣ ՜  Թ is defined in a way that it awards higher 
values to those paths (programs) that represent a good solution to 
the task, and lower values to a less suitable program. 
As mentioned previously, ants choose their path in the tree based 
on the amount of pheromone deposited on the tree, the formula3 
below gives us the probability of each edge to select: 

ܲ
ሺݐሻ ൌ  ሾ ்ሺ௧ሻሿഀ .ሾఎሿഁ 

∑ ሾ ்ሺ௧ሻሿഀ .ሾఎሿഁ 
ചሺᇲሻ 

  (5) 

Where ܲ
ሺݐሻ  is the probability of selecting the edge ݁ and ܶሺݐሻ 

is the amount of pheromone deposited on the edge e and ߟ is a 
heuristic value related to the selection of the edge ݁. The ܥሺ݊ᇱሻ is 
the candidate set, the edges which can be selected when the ant is 
on the node ݊ᇱ. The experimental parameters ߙ and ߚ control the 
relative importance of pheromone trail versus heuristic function. 
The pseudo code for GAP can be described as follows: 
 
[0] Program Generalized Ant Programming  
[1]      t = 0;  
[2]      Initialization (); 
[3]      repeat 
[4] t = t + 1; 
                                                                 
3 This formula is different with the one GAP present. They didn’t 

explain enough about their formula. 

Figure 1. Part of the tree which ants explore to generate the expression (program) 
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[5] for each ant k do 
[6]        Build a path p; 
[7]        Calculate ܮሺݐ,  ሻ
[8]           end; 
[9]           Save the best solution found so far; 
[10]         Update trail levels  ܶሺݐሻ; 
[11]   Shrink ܶሺݐሻ; 
[12]   Perform global shaking on ܶሺݐሻ; 
[13]      until termination; 
[14] end. 
 
While path creation and pheromone level updates have been 
discussed, the Shrink ܶሺݐሻ and Shaking ܶሺݐሻ procedures require 
explanation. Shrink ܶሺݐሻ is used to decrease the size of the T 
table. In this phase, all the keys that have a value less than the 
initial value of ܶ ( ܶ  0) are eliminated. The reason that these 
edges get values less than ܶ is the existence of evaporation. 
Shaking ܶሺݐሻ is used to normalize the amount of pheromone on 
the edges. This method is used because the pheromone on a 
derivation step (an edge of tree) becomes higher than all others, 
then the other will not be selected by ants so the ants will not 
explore properly the search space. The formula GAP is using in 
this regard is logarithmic one and is given by: 
 

ܶሺݐሻ ൌ  ܶ כ ቈ 1  ln ቆ
ܶሺݐሻ

ܶ
ቇ 

 
Where ܶ is the minimum value for  ܶሺݐሻ. 

3. Enhanced GAP (EGAP) 
3.1 Introduction 
Although section 2 represents a GAP algorithm that is more easily 
implementable, there is an important issue that is not addressed by 
the GAP algorithm [8]. This is, what is the termination condition 
for generating the path by each ant or when the path is complete? 
The simple solution to this problem is that the path is complete if 
it doesn’t have any non-terminal symbol in its expression. The 
other question is under what conditions can an ant seek a path that 
hasn’t any non-terminal symbol in it? The simple answer to this 
latter question is providing an upper bound on path length. 
However, this is not the end of the problem as we need to assign a 
fitness value for the paths which have a non-terminal symbol in 
their expression and are not still a complete computer program. 
When there are recursions in the rules of grammar, this issue 
becomes more significant. Consider the following grammar rules: 

൏ ݎݔ݁  ՜ ൏ ݎݔ݁ ൏  ൏ ݎݔ݁  |  ൏ ݎܽݒ   

൏   ՜ כ  |  െ |   | /                         (6) 

൏ ݎܽݒ  ՜ ܽ   
The starting symbol in this grammar is ൏ ݎݔ݁  and the first 
rules of this symbol (൏ ݎݔ݁  ՜ ൏ ݎݔ݁ ൏  ൏ ݎݔ݁ ) 
generate an expression that has two recursions to ൏ ݎݔ݁  . 
Using GAP for this grammar will produce poor results4. We 
observed that the expressions usually generated are either just ‘ܽ’ 
or very long, incomplete and unexecutable expressions. 

                                                                 
4 The experiment described in section four demonstrates the 

weakness of GAP when using this grammar.  

This observation prompts us find a fundamental remedy for this 
issue. The basic idea of this work described in this paper is to 
encourage ants to build their path in more well-structured way. 
In order to motivate the proposed GAP enhancements, consider 
building construction. First, civil engineers plan the foundation, 
cornerstone and structure of building rather than the internal 
decoration and appearance of the building. After that, architects 
will consider and think what kind of internal decoration, texture 
and lighting is suitable for this structure in order to achieve an 
aesthetic goal. As a result of this cooperation, the building will be 
well-structured and well-designed. 
Drawing an analogy to building construction, the research 
described here introduces a heuristic function and a new ant 
pheromone placement method in order to encourage ants to first 
build a good solution structure and then tune it. Similar to real 
programming, programmers exhibit the same behavior; they first 
design the schema of their program; for instance, they first 
consider where they will have a loop, if or switch structure and 
then they think about the conditions and parameters of these 
structures. 

3.2 Heuristic Function 
The heuristic function is designed to have ants expand the 
expression for a fraction of the maximum number of allowed rules 
and then select completion rules for the remainder. Maximum 
number of using rules is a constant specified by the user to limit 
the total number of rules which an ant can select to generate its 
own expression (program). Expression construction has two 
phases: expanding the expression (similar the task which civil 
engineers do) and completing and tuning the expression (similar 
to the task which an architect does). The first phase will be 
performed in a fraction of maximum number of using rules and 
the second phase will be done in the remainder. 
From this perspective, the rules of a grammar fall into two 
categories: expanding rules and finishing rules. Expanding rules 
tend to expand the expression by producing some other non-
terminal symbol as opposed to finishing rules which have a 
tendency to replace the non-terminal symbols of the expression 
with terminal ones. We present an expanding factor ( ݂) that 
shows to what extent a rule is an expanding rule. High values of 

݂ demonstrate the high probability of being an expanding rule 
while low values shows the high probability of being finishing 
rule. 
In order to clarify the above statements, in the grammar shown in 
(6), ൏ ݎݔ݁  ՜ ൏ ݎݔ݁ ൏  ൏ ݎݔ݁  has a high value of 
( ݂) as it has more tendency to expand the expression than the 
others whereas ൏ ݎܽݒ  ՜ ܽ has a low value of ݂ and it is 
more a finishing rule. Not only can the rules have an expanding 
factor but also the non-terminal symbols have expanding factor 
related to their rules’ expanding factors. 

To calculate ݂ for all the rules, we suggest an iterative algorithm. 
This algorithm first initializes the expanding factor ( ݂) of all the 
rules and non-terminal variables with a large value. Then it 
updates the expanding factor of each rule during every iteration. 
Each rule adds together the expanding factor of the non-terminal 
symbols that it generates and finally adds them with 1. Each non-
terminal variable updates its expanding factor by calculating the 
average over all of its rules. The update formula is:  
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݂ሺݔ, ݅ሻ ൌ ൣ∑ ݂ሺݕ, 0ሻ ௬ א ௧ ൧   1      ݅ ൌ 1 … ܰ (7) 

݂ሺݔ, 0ሻ ൌ  ݉݁ܽ݊ ݂ሺݔ, ݅ሻ                   ݅ ൌ 1 … ܰ  
Where  ݂ሺݔ, ݅ሻ is the expanding factor of non-terminal symbol x 
for its ݅th rule and ݊ݐ is the set of all non-terminal symbols 
included in that specific rule (݅th rule). ݂ሺݔ, 0ሻ is the expanding 
factor of the non-terminal symbol x. For example, suppose: 

ܨ ՜  ܽܨ |  ܽܽ | ܾܶܽܵܽܽ
In this rule, S and T are non-terminal symbols while ܽ and ܾ are 
terminal symbols. Then, ݂ for rules related to F is updated by: 

݂ሺ"F", 1ሻ ൌ  ݂ሺ"S", 0ሻ  ݂ሺ“ܶ”, 0ሻ   1  

݂ሺ"F", 2ሻ ൌ 1  

݂ሺ"F", 3ሻ ൌ ݂ሺ"F", 0ሻ   1  
And  ݂ of F is updated by: 

݂ሺ"F", 0ሻ ൌ mean ሺfୣሺ"F", 1ሻ, fୣሺ"F", 2ሻ, fୣሺ"F", 3ሻሻ 
 

The pseudo code of assignment of ݂ is presented below: 

[0]     Initialize ݂ሺݔ, ݅ሻ with a high value for all x and i. 
[1]     for ݅ ൌ  1 to number of non-terminal symbols 
[2] for each x belonging to non-terminal symbol set 
[5]                 Update ݂ሺݔ, ݅ሻ  according to (7); 
[6] end   
[7]     end 
Returning to the heuristic function explanation, the heuristic 
function should be proportional to ݂ when the ant is in the first 
phase of path generation (the expanding phase) and should be 
reversely proportional to ݂ when the ant is in the second phase 
(the finishing phase). Then 

Hሺ x, i, nሻ ן   fୣሺx, iሻ     if n ൏ t୬    
Hሺ x, i, nሻ ן   1/fୣሺx, iሻ     if t୬  ൏ n ൏ maxN      (8) 
Where x is a non-terminal symbol and  ݅ is an index of x’s rules. 
Furthermore,  ݊  is the number of rules that an ant has applied so 
far to reach its current expression and ݐ is the constant threshold 
related to changing the phase of the construction (from expanding 
phase to finishing phase). Finally,  ݉ܽܰݔ is the maximum number 
of using rules for all ants. 
The following function has the characteristics defined in (8):  

,ݔ ሺܪ  ݅, ݊ሻ ൌ  ݁
ష 


 ሺ ୪୭ ሺሺ௫,ሻ ା ଵሻכ 

            (9) 

Where x is a non-terminal symbol and  ݅ is an index of x’s rules. 
Furthermore,  ݊  is the number of rules that an ant has applied so 
far to reach its current expression and ݐ is the constant threshold 
related to changing the phase of the construction (1 ൏ ݐ  ൏
 is the maximum number of using rules for  ܰݔܽ݉  while ( ܰݔܽ݉
ants. In the case of  ݊ ൏  , the fraction ௧ି ݐ

௧
  is positive then  ܪ  

and ݂ሺݔ, ݅ሻ has a direct relationship. The higher value of ݂ሺݔ, ݅ሻ 
results the higher value of H but, when  ݊   , H is reverselyݐ
proportional to ݂ሺݔ, ݅ሻ. Thus, the higher value of ݂ሺݔ, ݅ሻ results 
the lower value of H. 
 

3.3 The Pheromone Placement Method 
In the GAP model, the amount of pheromone deposited on the 
graph by an ant depends on the fitness value ܮሺݐ,  ሻ and the
constant Q. This paper presents another method of pheromone 
placement. In this method, in addition to ܮሺݐ,  ሻ, the rank of the
ants as well as the number of the rules used to reach that edge is 
considered. 
This method of pheromone placement tends to put more 
pheromone in the derivation steps, the steps made at the 
beginning of the path. This is based upon the hypothesis that if the 
fitness of a path is better than others this path is likely to have 
good structure and putting more pheromone on the early 
selections can encourage other ants to build this (or similar) 
structure(s). A small amount of pheromone in the latter edges of a 
path provides this opportunity for ants to explore final edges 
better. This is because these edges with a small amount of 
pheromone are biased less than the beginning edges. 
The total amount of pheromone ant k places on the trail is:  
 Θ୩ ؔ f൫rankሺkሻ൯. ,ݐሺܮ   ሻ   (10)

Where ܮሺݐ,  ሻ is the value of the objective function obtained by
ant k at time t and  f൫rankሺkሻ൯ is a factor that depends on the rank 
of the path (program) found by ant k. Note that ranking is done 
with respect to the ܮሺݐ,  .ሻ of ants
The contribution of ant k to the update of a trail is computed as 
follows. As argued above, the intent of this method is to put more 
pheromone at the beginning of the path than at the end of the 
path. 

 ∆ ܶሺݐሻ ൌ  Θ୩  . 2 . Lି୬ାଵ
Lమା L

  (11) 

Where L is the total number of rules which ant k has used to 
generate its program (path) and n is the number of rules used by 
ant k to reach this specific edge whose pheromone is being 
updated. 

Note that, since ∑ ሺܮ െ ݊  1ሻ
 ୀଵ  ൌ  Lమା L

ଶ
, it is easy to verify 

that the total amount of pheromone placed on the trail by ant k 
is Θ୩ . 

4. EXPERIMENTAL RESULTS 
In this section, the performance of GAP and EGAP will be 
compared in three experiments: Quartic Symbolic Regressions, 
Multiplexer, and Santa Fe ant trail. 
GAP and EGAP have been run with the same parameters.   The 
evaporation rate   is 0.5 and ߙ and ߚ are considered 2 and 1 
respectively. The initial pheromone concentration, ܶ, is 10ି and 
maxN is 100. For each algorithm, 10 simulations are run with 100 
iterations and, in each iteration, 20 ants have passed through the 
graph. 
For both of the algorithms (EGAP, GAP), the number of 
generated individual is equal. In both EGAP and GAP, 100 
iterations for 20 ants (100*20 = 2000) have been considered. 

4.1 Quartic Symbolic Regression 
The target function is defined as ݂ሺܽሻ ൌ  ܽ  ܽଶ  ܽଷ  ܽସ, and 
200 numbers randomly generated in the range of  ሾെ10,10ሿ  are 
used as the input for this function and the corresponding output of 
them is found. Therefore, the desired output for these 200 input 
numbers will be these outputs called  ݕ  vector. The objective of 
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this experiment is that these two algorithms (EGAP and GAP) 
find the expression that has the nearest output to  ݕ  for x input 
vector. The fitness function for all the two algorithms is defined 
as follows:  

݂ሺ, ,ݔ ሻݕ ൌ  ଵ
ே

 ∑ – ሺ݊ሻሻݔሺ| ሺ݊ሻ|ேݕ 
ୀଵ          (12)  

,ሺݏݏ݁݊ݐ݅ܨ ,ݔ ሻݕ ൌ  ଵ
ଵାሺ,௫,௬ሻ

   

Where   is the expression generated by the automatic 
programming algorithm; x and y are the input vector and desired 
output vector respectively. Finally, N is the number of the 
elements of x. The grammar used in this experiment for EGAP 
and GAP is given by 

൏ ݎݔ݁  ՜ ൏ ݎݔ݁ ൏  ൏ ݎݔ݁  |  ൏ ݎܽݒ   
൏   ՜ כ  |  െ |   | /  
൏ ݎܽݒ  ՜ ܽ  
In Figure 2, the plot of the mean best fitness over 10 runs can be 
seen. EGAP clearly outperforms the GAP in this experiment. A t-
test comparing these two methods in this experiment gives a score 
of 7.562 in the favor of EGAP—significant at the 99% confidence 
level. 

 
In Figure 3, the average node branching factor of all the nodes 
have visited in 10 runs each of which has 100 iterations can be 
observed. By inspection, although we use a heuristic method in 
EGAP, the branching factor in both methods looks similar. 
Superficially at least, it appears that EGAP has the same ability of 
exploration of search space as GAP although it uses the heuristic.  
 

 
 

4.2 4-to-1 Multiplexer 
The goal of this problem is to find a boolean expression that 
behaves as a 4-to-1 Multiplexer. There are 64 fitness cases for the 
4-to-1 Multiplexer, representing all possible input-output pairs. 
Program fitness is the percentage of input cases for which the 
generated boolean expression returns the correct output. The 
grammar adopted for this problem is as follows: 

൏ ݎݔ݁݉  ՜ ൏ ݎݔ݁݉ ൏ 2 ൏ ݎݔ݁݉  | ൏ 1 ൏
ݎݔ݁݉  | ൏ ݐݑ݊݅   
൏ 1  ՜   ݎ | ݀݊ܽ
൏ 2  ՜   ݐ݊ 
൏ ݐݑ݊݅  ՜
  5ݐݑ݊݅ | 4ݐݑ݊݅ | 3ݐݑ݊݅  | 2ݐݑ݊݅ |  1ݐݑ݊݅  |  0ݐݑ݊݅ 
A plot of the mean best fitness over 10 runs of 100 iterations for 
these two algorithms is illustrated in Figure 4. As shown, EGAP 
had the better performance compared to GAP. It is interesting to 
note that this problem is not hard and both of these algorithms 
could usually find the simple boolean expression generating 40 
correct answers out of 64 possible correct results in their first 
iteration. Despite the fact that this problem is not a good 
benchmark for these two algorithms because of its simplicity, 
EGAP represents a statistically significant improvement over 
GAP for this problem. A t-test comparing these two methods 
gives a score of 3.621 in the favor of EGAP—significant at the 
95% confidence level. 

 

4.3 Santa Fe ant trail 
The Santa Fe ant trail is a standard problem in the area of GP. The 
objective of this problem is to find a computer program to control 
an artificial ant in such a way that it finds all 89 pieces of food 
that are located on the discrete trail. Furthermore, the ant is 
limited to find the food in a maximum number of time steps and 
the trail is located on the 32x32 grid. The ant can only turn left, 
right, or move one square ahead. Also, it can check one square 
ahead in the direction facing in order to recognize whether there is 
a food in that square or not. All actions, except checking the food, 
take one step for the ant to execute. The ant starts its foraging in 
the top-left corner of the grid. The grammar used in this 
experiment is:  

 ൏ ݁݀ܿ  ՜൏ ݈݅݊݁   |  ൏ ݁݀ܿ  ൏ ݈݅݊݁   
൏ ݈݅݊݁  ՜൏ ݊݅ݐ݅݀݊ܿ   |  ൏    
൏ ݊݅ݐ݅݀݊ܿ  ՜ ݂݅ሺ݂݀_݄ܽ݁ܽ݀ሺሻሻ  
                                               ሼ ൏ ݈݅݊݁  ሽ 
  ݁ݏ݈݁                                   
                                                ሼ ൏ ݈݅݊݁  ሽ  

Figure 4. Plot of the mean of the best fitness on the 
multiplexer problem during the 100 iterations 

Figure 3. The plot of average node branching factor over 
10 runs during 100 iterations 

Figure 2. Plot of the mean of the best fitness on quartic 
symbolic regression problem during the 100 iterations 
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൏   ՜   ;ሺሻ݁ݒ݉ | ;ሺሻݐ݄݃݅ݎ | ;ሺሻݐ݂݈݁
The fitness function for both algorithms is the number of food 
items found by ant over the total number of food items, which is 
equal to 89. 
 

 
In Figure 5, the plot of the mean best fitness over 10 runs for ant 
trail problem can be seen. EGAP outperforms the GAP in this 
experiment. A t-test comparing these two methods gives a score 
of 2.195 in the favor of EGAP—significant at the 95% confidence 
level. 

4.4 Discussion 
The main contributions of this paper are the introduction of a new 
heuristic function for program generation and a different method 
of pheromone placement for GAP. As shown in previous sections, 
the results of the experiments reveal the advantage of using this 
heuristic function and pheromone placement over GAP. An 
intriguing question is that to what extent each of these two 
suggested modifications (Heuristic and Pheromone Placement) 
contributes to the strength of EGAP. In order to understand this 
we devised another experiment, separating the two modifications. 
We chose the same parameter setting of quartic symbolic 
regression and run two more algorithms, GAP with the proposed 
heuristic function (GAP + H) and GAP with the proposed 
pheromone placement method (GAP + PP) to solve the quartic 
symbolic regression. The result of these two new algorithms and 
previous results of GAP and EGAP are shown in Figure 6. 
  

 

As illustrated in Figure 6, both GAP + H and GAP + PP 
outperform GAP in 100 iterations in this experiment; although the 
performance of GAP + H was better than the result of GAP + PP. 
Interestingly, this experiment shows that although EGAP uses 
both heuristic function and pheromone placement methods, its 
performance is considerably better than the performance of GAP 
+ H and GAP + PP.  In other words, the strength of EGAP is not 
only because of using these two heuristic function and pheromone 
placement but also because of the interaction of these two 
methods. 

5. CONCLUSIONS AND FUTURE WORK 
This paper proposes a novel automatic programming technique 
based upon the use of ACS and context free grammars. The 
research reported identifies weaknesses in GAP in the areas of 
path termination and pheromone placement. To solve these 
problems, a new heuristic function which is inspired from the 
building construction is presented in this work as well as the new 
method of pheromone placement. The heuristic function guides 
the ants to first construct a good structure for solution which is 
analogy to two phases of building construction, constructing the 
structure and decoration. This kind of the thinking exists in other 
aspects of life in that we first consider about the whole of object 
then we considerate on details and parts. 
The results of the experiments reveal the advantage of using this 
heuristic function and pheromone placement over GAP. 
Furthermore, the results empirically demonstrate that EGAP and 
GAP have almost the same node branching factor, and then the 
heuristic did not affect the exploration ability of the algorithm in 
the solution space. 
We plan to compare the result of EGAP with GP in our future 
work in order to understand better the performance of EGAP.   
 We believe that the heuristics proposed in this paper can be 
extended and used in other automatic programming algorithms. 
Furthermore, extending the heuristic function so that it has an 
adaptive phase duration should be investigated. In this way, based 
on the grammar and the fitness of generated program, ants will 
decide about the duration of each phase of construction. 
The other suggestion for future work is in the use of 
heterogeneous ants in EGAP. Agent heterogeneity has been found 
to be useful in other search algorithms, including ACS and PSO. 
In the context of EGAP, ants would have variability in the 
duration of their construction phases. Hence, these ants could 
produce programs with different levels of complexity and length. 
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