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Abstract

Graph neural networks (GNNs) have exhibited state-of-the-art per-
formance across a wide range of domains. Yet message-passing
GNNs suffer from over-squashing—exponential compression of
long-range information from distant nodes—which limits expres-
sivity. Rewiring techniques can ease this bottleneck, but their prac-
tical impacts are unclear due to the lack of a direct empirical over-
squashing metric. We propose a topology-focused method for as-
sessing over-squashing between node pairs using the decay rate of
their mutual sensitivity. We then extend these pairwise assessments
to graph-level statistics. Coupling these metrics with a within-
graph causal design, we quantify how rewiring strategies affect
over-squashing on diverse graph- and node-classification bench-
marks. Our extensive empirical analyses show that most graph
classification datasets suffer from over-squashing (but to various
extents), and rewiring effectively mitigates it—though the degree
of mitigation, and its translation into performance gains, varies by
dataset and method. We also found that over-squashing is less no-
table in node classification datasets, where rewiring often increases
over-squashing, and performance variations are uncorrelated with
over-squashing changes. These findings suggest that rewiring is
most beneficial when over-squashing is both substantial and cor-
rected with restraint—while overly aggressive rewiring, or rewiring
applied to minimally over-squashed graphs, is unlikely to help and
may even harm performance. Our plug-and-play diagnostic tool
lets practitioners decide whether rewiring is likely to pay off.
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1 Introduction

Graph Neural Networks (GNNs) [18, 24, 31] have become a power-
ful learning framework for graph-structured data. Message-passing
Neural Networks (MPNNs) [17]—a prominent subclass of GNNs—
iteratively aggregate messages from neighboring nodes at each
layer, enabling information propagation across the graph through
layer stacking. To enable interactions between distant nodes, deeper
networks with more layers are often required [6]. However, as the
number of layers increases, the receptive field of each node (i.e., the
set of nodes that influence a node’s representation through message
passing) can expand rapidly, leading to excessive compression of
information into fixed-size node representations. This phenome-
non, known as over-squashing [3], ultimately hampers effective
information flow and learning.

As over-squashing is strongly connected with the topological
properties of input graphs (e.g., commute time and effective re-
sistance [7, 13]) , most of its mitigation approaches are rewiring
techniques [3, 4, 16, 26, 33] , which modify a graph’s connectivity
to improve information flow between distant, weakly connected
nodes. Despite its promise, the effectiveness of rewiring techniques
remains challenging to assess due to the absence of a direct, empir-
ical measure of over-squashing. The Jacobian norm offers a formal
foundation for measuring over-squashing, but it is computationally
prohibitive, and does not isolate the graph’s topology effect on
over-squashing due to its high dependency on the model’s choices
and parameters. Due to these limitations, effective resistance has
emerged as a proxy [7, 13], which offers relative insights—e.g.,
which of two node-pairs (or two graphs) is more susceptible to
suffering over-squashing. However, this measurement lacks a clear
threshold to identify (e.g., whether or not over-squashing occurs
for a node pair or a graph) or quantify the extent of over-squashing.
This ambiguity obscures the need or justification for rewiring as
an over-squashing mitigation strategy.

To tackle these challenges, we propose a topology-focused mea-
surement framework for over-squashing built upon a formal charac-
terization of over-squashing—rather than being a proxy. We quan-
tify pairwise over-squashing by modeling node-pair sensitivity ex-
ponentially decaying with the model depth (i.e., number of layers).
This assumption mirrors the over-squashing theoretical definitions
of Topping et al. [33], which show that sensitivity diminishes rapidly
along long paths in over-squashed graphs. Using decay rates of
node pairs as a direct and interpretable indicator of over-squashing,
we derive graph-level over-squashing metrics and then leverage
them in a causal inference framework to evaluate the rewiring ef-
fectiveness for over-squashing mitigation. This enables a rigorous
evaluation of rewiring strategies on over-squashing across a diverse
range of graph and node classification tasks.
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We applied our measurement framework to address four key
questions across node- and graph-classification tasks: (extent) How
much over-squashing does each dataset exhibit?; (mitigation) How
effectively do current rewiring methods reduce it?; (translation) Do
these reductions translate into performance gains?; and (respon-
siveness) How responsive is each dataset to over-squashing miti-
gation? Our results show that most graph classification datasets
suffer from substantial over-squashing, making rewiring a sensi-
ble intervention. Among the rewiring strategies, DIGL [16] is the
most effective in mitigating over-squashing, yet FoSR [20] and
BOREF [26] exhibit stronger correlations between over-squashing
reduction and performance improvements (i.e., more effective in
translation). Every graph dataset is responsive—over-squashing
falls after rewiring—except Reddit-B, which is counter-responsive.
In most node-classification datasets, rewiring often increases over-
squashing, and performance changes are independent of it (i.e.,
no translation). Also, node datasets are mostly counter-responsive
to the rewiring. Our findings suggest rewiring is most effective
when over-squashing is significant, as in most graph-classification
datasets, and less justified when over-squashing is minimal (as in
most node-classification datasets). Our plug-and-play diagnostic
framework enables practitioners to quantify over-squashing and
decide—before expending training cycles—on applying rewiring.

2 Preliminaries and Related Work

We consider an undirected graph G = (V, E) with n nodes and
m edges, represented by its adjacency matrix A € R™ ", To in-
clude self-loops, we define A = A + 1, with I € R™ " being the
identity matrix. Each node v has a d-dimensional feature vector
Xy € R4, Message-Passing Neural Networks (MPNNs) propagate
information through the graph by the L-stack of graph convolution
layers (or message-passing layers), where L represents the depth
of the model. Each layer ¢ is composed of the aggregator agg(f)
function (e.g., mean) and update up(f) function (e.g., MLP). Node

v’s representation hz(,[) at layer ¢ is updated by
by =up® (b5, agg® (b i ue N)),

where N = {u € V : (u,0) € E} denotes the 1-hop neighborhood
of node v. The number of layers L (i.e., model depth) determines
how far information flows across the graph, defining the receptive
field for each node v—the set of nodes whose initial features (at

layer 0) can influence v’s final representation hz(,L), As each layer
propagates information one hop further, the receptive field grows
with depth.

Over-Squashing. When a task relies on long-range information
exchange between distant node pairs, effective information prop-
agation requires the model depth L to be at least as large as the
geodesic distance between nodes, allowing them to fall within
each other’s receptive fields. However, in most real-world graphs,
receptive fields grow exponentially with the number of layers, forc-
ing MPNNs to compress increasingly large sets of node features
into fixed-width node embeddings. This excessive compression
leads to information loss and reduces the model’s expressivity, a
phenomenon known as over-squashing [3]. The over-squashing of
information can be understood by assessing the sensitivity of node
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v’s representation after ¢ layers of message passing to node u’s
input feature hl(lo) through the absolute Jacobian’s norm [33]:!

Je(o,u) = [|onS" Jon{]]. @)

Of special interest for assessing over-squashing is normalized Jaco-
bian’s norm
Je (v, u)

Sk @ ) ©
which measures relative sensitivity [33, 37]—the sensitivity of node
v’s feature at layer ¢ to node u’s initial feature, relative to v’s sen-
sitivity to all nodes. Without this normalization, the model might
overestimate a node’s sensitivity based solely on its absolute Ja-
cobian norm. A small J; (v, u) indicates that node v is negligibly
sensitive to node u, signaling over-squashing. In severe cases—e.g.,
tree-like graphs [33]—both J; (v, u) and Fi(v,u) decay exponen-
tially with ¢, causing sensitivity to vanish. This vanishing sensitivity
reflects the progressive suppression of messages from u at v, a sig-
nature of over-squashing. Our over-squashing measures build upon
the theoretical characterization of [ﬁ»(v, u), which links the decay
of pairwise sensitivity in node embeddings to the number of GNN
layers and the graph’s topology.

Je(v.u) =

Over-Squashing Measurement. The Jacobian norm (and its vari-
ants) is a principled measure of over-squashing, but has practical
shortcomings. (i) It is computationally prohibitive: for n nodes with
feature dimension d, the full Jacobian is an (nd) X (nd) matrix,
requiring O(n?d?) memory and time. (ii) It is parameter-dependent,
varying with weight updates and model-specific hyperparameters
(e.g., hidden size). (iii) It fails to isolate the graph’s topological
effects, being highly dependent on model choices and parameters.
To focus more directly on graph topology, recent work resorts
to measuring over-squashing through the lens of effective resis-
tance [7, 13]. Node pairs with high effective resistance are more
susceptible to over-squashing [7, 13], and a graph’s total effective
resistance serves as a global proxy for over-squashing. However,
effective resistance has key limitations: (a) it only allows relative
comparisons—offering no threshold for when, or how severely,
over-squashing occurs; (b) Though related to over-squashing, the
effective resistance is not derived from its formal characterizations
(e.g., Jz(v,u)), leaving uncertainty about whether a given pair is
truly over-squashed. To avoid these shortcomings, we approximate
the relative Jacobian norm directly, yielding a measure that is both
topology-centered and largely model-agnostic without the heavy
computational cost of full Jacobian computation.
Rewiring. Rewiring—the primary mitigation for over-squashing
[3]—modifies a graph’s edges while keeping its nodes unchanged to
improve information flow. Spatial connectivity methods add edges
to shorten distances by including virtual nodes [10, 32], leverag-
ing higher-order structures [8, 9], fully connecting the last GNN
layer [3], or linking nodes within certain distances or across layers
[1, 2,5, 15, 16, 19, 27, 34]; Graph Transformers take this to the ex-
treme by connecting all nodes via attention-based edges [21, 28, 38].
Other approaches optimize graph-theoretical properties to reduce
topological bottlenecks: SDRF [33] adds edges in low-curvature
regions, BORF [26] adds in minimally curved regions and prunes

!Some use the term influence for the same Jacobian-based norm quantity; we adopt
sensitivity throughout for consistency.
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highly curved edges, FoSR [20] maximizes the spectral gap, GTR [7]
minimizes total effective resistance, and DIGL [16] applies diffusion-
based rewiring (e.g., personalized PageRank, heat kernel) followed
by sparsification.

While rewiring aims to mitigate over-squashing, its true impact is
unclear; performance gains may arise from reduced over-squashing
or confounding factors such as implicit regularization or altered
graph smoothness. To disentangle these effects, we propose a mea-
surement framework using causal inference to evaluate rewiring
interventions.

3 Measurement and Causality Framework

We first propose a method to measure pairwise over-squashing,
extend it to graph-level metrics, and then apply these metrics to
causally evaluate the impact of rewiring.

3.1 Pairwise Over-Squashing Measurement

Our goal is to derive a pairwise over-squashing measure between
node pairs in a graph that is (i) computed once per graph, (ii) aligned
with the relative Jacobian norm as a foundation for measuring over-
squashing, (iii) focused on graph topology, (iv) dependent only on
model depth as a contributing factor,? and (v) theoretically-founded
on the rigorous definition of over-squashing. We achieve (i-iv) by
introducing approximations to relative Jacobian norms, and (v) by
considering the exponential decay rate.

Approximation to Normalized Jacobian Norm. To quantify
over-squashing, we focus on the relative Jacobian norm j}(v, u),
which measures node v’s sensitivity to node u as a fraction of its
total sensitivity to all nodes, overcoming the limitation of the ab-
solute norm J (v, u) that ignores total information received by v.
Directly computing J; (o, u) is prohibitively expensive and must
be recomputed with any change in model parameters or hyperpa-
rameters, conflating topological effects with model-level factors. To
address these issues, we introduce:

PROPOSITION 3.1 (APPROXIMATION OF THE NORMALIZED JACO-
BIAN NorM). Let A = A +1 be the adjacency matrix of an undirected
graph augmented with self-loops , and assume a linear message-
passing GNN. Then, for any pair of nodes u,v and layer depth £ > 0,
the normalized Jacobian norm can be written as

. Al
Jr(v,u) = —22—, 4
(v,u) LAl 4
where AL is the (u,0)-entry of A to the power .

Remark. Self-loops guarantee reachability for every choice of ¢: e.g.,
in a dyad (two nodes joined by one edge), walks of even length
between the nodes vanish without self-loops, but A ensures non-
zero counts for all ¢.

The proof of this proposition is in Appendix A. In practice, GNNs
typically include nonlinearities (e.g., ReLU), which yield computa-
tion of nontrivial Jacobians that require recursive application of
the chain rule . Moreover, certain paths in the computational graph
may become inactive (e.g., due to ReLU zeroing gradients), making

2Model depth is necessary for any over-squashing measurement as the definition of
over-squashing is based on it: the progressive compression of information as the model
depth increases (i.e., the number of message-passing layers grows).
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exact computation intractable. Thus, equality no longer holds for
nonlinear MPNNs. However, linear MPNNs are empirically compet-
itive and theoretically well-founded [14, 22, 29, 36], and omitting
nonlinearity helps remove model-specific factors (see the proof of
Proposition 3.1), enabling a sensitivity measure that reflects only
the graph structure and the depth. We approximate the nonlinear
normalized Jacobian’s norm using its simplified single-computation
form in Eq. 4, and henceforth denote this approximation as Ji(v,u).
This approximation satisfies our design criteria outlined earlier: it is
once-pre-computed (criterion i), derived from normalized Jacobian
norms under some simplification assumptions (i.e., removing non-
linearities) (criterion ii), and only dependent on graph topology
A and the layer depth ¢, remaining mainly topology-focused and
model-agnostic (criteria iii and iv).

Exponential Decay Rate as an Over-Squashing Indicator. A
key signature of over-squashing is the rapid decay of sensitivity
(e.g., normalized Jacobian norms) with increasing model depth
¢. For rigor, we model this decay as exponential, similar to Di
Giovanni et al. [13], and consistent with theoretical observations
in tree-like graphs [33], where both J¢ (v, u) and ¢ (v, u) diminish
exponentially with ¢, leading to vanishing sensitivity:

Je(v,u) = Noe~keut,| ©)

where Ny = (0, u) is the initial sensitivity (£ = 0), and ko, is the
decay rate specific to the pair (v, ). A positive ky, indicates over-
squashing, with larger values reflecting stronger decay. Taking the
natural logarithm linearizes this relationship:

In 97 (v, u) = In Ny — ko t. ()

To estimate kyy,, we fit a linear regression model of In Fi(v,u)
against £, where the slope corresponds to —ky,,. A negative slope
(i.e., positive kqy,) confirms exponential decay, with the magnitude
of kyy reflecting the severity of over-squashing.* Following Di Gio-
vanni et al. [13], we change ¢ in the interval [D, 2D — 1], where D
is the graph diameter, ensuring reachability for any pair of nodes.

3.2 Graph-Level Over-Squashing Measurement

To derive a graph-level assessment, we summarize the distribution
of positive decay rates using four statistics:

e Prevalence is the fraction of node pairs with positive decay
rates (kyy > 0). It reflects the spread of over-squashing across
the graph.

¢ Intensity is the average of all positive decay rates, indicating
the typical strength of over-squashing among affected node
pairs.

e Variability is the standard deviation of positive decay rates,
measuring the consistency or disparity in over-squashing
strength across node pairs.

o Extremity is the largest observed positive decay rate in the
graph, capturing the worst-case over-squashing instance.

3The decay rates kyy, and k;, need not be equal because the number of length-¢ walks
that reach the target node can differ for v and u. For instance, in a star graph with
center o and a leaf u, we have Ji (v, u) # i (u, v) since (3 A}w * Dk A}(u)
“For pairwise analyses, one can use statistics such as R? and p-values to assess model
fit and decay trend significance. However, since our focus is on graph-level over-
squashing, we aggregate pairwise decay rates into graph-level metrics and evaluate
statistical significance within our causal framework.
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For datasets involving multiple graphs, we compute dataset-level
summaries by averaging each metric over all graphs. For ease of
interpretation, we sometimes map each graph-level statistic into
three ordinal categories. Intensity and Extremity categorized as
weak (< 0.13), moderate (0.13-0.23), strong (> 0.23), based on
corresponding pairwise sensitivity half-lives of > 5, 3-5, and < 3
layers, respectively (i.e., the number of layers needed for sensitivity
to halve). Under the same thresholds, variability is classified as
low (< 0.13), moderate (0.13-0.23), high (> 0.23). Prevalence is
grouped as small (< 25%), moderate (25 —50%), large (>50%); these
cut-points align with intuitive quartile boundaries: fewer than one
quarter of node pairs indicates sparse over-squashing, 25-50% a
moderate regime, and more than 50% an affected majority.

3.3 Causal Estimation of Rewiring Effects

We evaluate the impact of a rewiring method R using our graph-
level over-squashing metrics (prevalence, intensity, variability, ex-
tremity) within a causal inference framework, where rewiring acts
as the treatment T and our metrics are the outcomes. The treated
graph is R(G) (T = 1) and the control graph is G (T = 0). Out-
comes Y((G) and Y5((R(G)) are measured for the control and
treated graphs, respectively, with M representing any of our over-
squashing metrics (e.g, prevalence, intensity, etc.). Treating each
graph as a unit, we compare it before and after rewiring to iso-
late rewiring effects from structural confounders (e.g., number of
nodes). To ensure valid causal attribution, we adopt standard causal
inference assumptions: SUTVA, Positivity, Exchangeability, and
Consistency—detailed in the full version of this paper [30].

We assess how a rewiring R influences the over-squashing mea-
surement M for a graph G through Individual Treatment Effect
(ITE):

ITE (G, R) = Yp(R(G)) - Yp((G). @)
For graph classification with a dataset of N graphs O = {G;}, we
compute the Average Treatment Effect (ATE) to quantify the overall
impact of rewiring R across the dataset:

N
ATEp((D.R) = ~ 3 ITEp(Gi R). ®)
N =
For each dataset, we evaluate the effect of rewiring R on prevalence,
intensity, variability, and extremity. A negative ATE/ITE indicates
mitigation. For example, a negative ATE on prevalence indicates
that rewiring reduces the number of over-squashed node pairs; a
negative ATE on intensity reflects a decrease in the average severity
of over-squashing; and a negative ATE on extremity suggests that
the most severe cases of over-squashing have been mitigated.
Statistical Significance of Treatment Effects. For graph classifi-
cation, we test ATE significance with a two-tailed ¢-test and apply
Bonferroni correction [35] to control for multiple comparisons. For
node classification, we assess ITE significance at the node-pair level:
prevalence is tested with McNemar’s test [23] for paired binary
data, and intensity with a paired ¢-test.

4 Experiments

We first measure over-squashing levels across datasets, then apply
our causal framework to assess how effectively rewiring mitigates
it in graph and node classification tasks.
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Table 1: Statistics of graph-classification datasets, av-
eraged over all graphs in each dataset. Color coding:

weak/low/small , moderate , and strong/high/large .

Statistic Bioinformatics Social Networks
Mutag ProteinsEnzymes IMDB Collab Reddit
#Graphs 188 1109 600 1000 5000 2000
g“ Nodes 18 39 33 20 74 430
% Edges 28 92 78 106 2494 712
Diameter 8.21 11.56  10.89 1.86 1.86 9
Components 1.00 1.07 1.24 1.00 1.00 2.48
L Prevalence 5.93e-1 5.97e-1 6.03e-1 6.28e-1 5.57e-1 4.72e-1
g Intensity ~ 1.09e-1 1.37e-1 1.30e-1 3.12e-1 2.56e-1 1.96e-2
fVariability 1.06e-1 1.34e-1 1.31e-1 1.57e-1 1.93e-1 1.88e-2
s Extremity 4.54e-1 5.71e-1 5.96e-1 5.49e-1 9.10e-1 1.35e-1

4.1 Methodology and Experimental Setup

We discuss our experimental methodology, including empirical
research questions, datasets, rewiring baselines, hyperparameters,
measurements, and statistical tests.

Research Questions and their Importance. In our experiments,
we address four key questions for graph and node-level tasks:

o (Q1) How do over-squashing measurements (i.e., prevalence, in-
tensity, variability, and extremity) vary across datasets? Which
datasets are inherently most or least susceptible under each
measurement? This question identifies which datasets are
inherently more or less prone to over-squashing, guiding
benchmark selection for over-squashing research and the
necessity of mitigation strategies. It also informs whether
over-squashing trends are dataset- or domain-specific (e.g.,
social vs. biological networks).

(Q2) What are the treatment effects of each rewiring method
across datasets? Which rewiring strategy most (or least) effec-
tively reduces over-squashing measurements? This question
quantifies the treatment effects of rewiring strategies and
enables their comparative “effective” ranking.

o (Q3) How do treatment effects correlate with performance gains
for a rewiring method over datasets? This evaluates if reduc-
ing over-squashing translates into improved generalization.
By assessing the correlation between treatment effects and
performance gains (i.e., the change in predictive performance
before and after rewiring), we distinguish rewiring meth-
ods that improve performance by mitigating over-squashing
from those whose gains are from other factors.

(Q4) Which datasets are most responsive to rewiring—that is,
show the largest relative reductions (treatment effect divided
by the pre-treatment value)—and which are most resistant?
Answering this question sheds light on the inherent difficulty
of reducing over-squashing across different graph structures,
datasets, or domains.

Datasets. We study node and graph classification datasets com-
monly employed in over-squashing and rewiring research [3, 20,
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26, 32, 33]. Graph classification datasets are from the TUDataset
benchmark [25]: three bioinformatics datasets of Mutag, Enzymes,
and Proteins, and three social network datasets of IMDB-B, Collab,
and Reddit-B (see Table 1 for their statistics). For node classification,
we evaluate six datasets: Cora, Citeseer, Texas, Cornell, Wisconsin,
and Chameleon, analyzing only their largest connected component
(see Table 4 for statistics).

Rewiring Baselines (Subjects). We examine the effectiveness of
five rewiring methods commonly used in mitigating over-squashing:
FoSR [20], DIGL [16], SDRF [33], GTIR [7]°, and BORF [26].°

Hyperparameters. Our measurement framework has a single
parameter—the message-passing depth {—varied from the graph’s
diameter to twice its diameter [13]. Rewiring methods have their
own hyperparameters (e.g., iterations for FOSR/SDREF, edges added
or removed per iteration for BORF, edges added in GTR, sparsifi-
cation threshold for DIGL)—tuned for specific GNN architectures
(e.g., GCN, GIN). To control for this dependency, we evaluate each
method using all performance-optimal configurations from prior
work for each architecture—four for graph classification (GCN,
GIN, R-GCN, R-GIN) and two for node classification (GCN, GIN).
This avoids bias from a single configuration and ensures fair com-
parisons. Combinations not previously evaluated (e.g., BORF with
R-GCN/R-GIN, DIGL with node-level GIN) are omitted.

Measurements. To address Q1-Q4, we apply our over-squashing
measurement framework. For Q1, we measure over-squashing met-
rics (e.g., prevalence, intensity, etc.) on the original graphs (see
Tables 1 and 4). For Q2-Q4, we compute ITE 5,(G, R) for node clas-
sification and ATE 5 (D, R) for graph classification. Each rewiring
method is evaluated using its performance-optimal, architecture-
specific hyperparameters, yielding one ATE/ITE per (method, archi-
tecture) pair. To control for architectural dependency and avoid bias
from any single configuration, we report aggregated ATE/ITE by
averaging across all relevant configurations. Statistical significance
is tested at @ = 0.05 with Bonferroni correction [35]. Performance
gains (i.e., the change in task performance before and after rewiring)
are taken from the original papers under the same replicated hy-
perparameter settings.7

4.2 Results on Graph Classification Tasks

We report our results of Q1-4 for graph classification.

Dataset Over-Squashing Levels (Q1): Table 1 shows that over-
squashing prevalence is relatively consistent (55%—62%) across most
datasets, except for Reddit-B (47%). For other measures, the bioin-
formatic datasets have low intensity (0.10-0.13), low variability
(0.10-0.13), and high extremity (0.45-0.59). However, social net-
work datasets exhibit more severe over-squashing: IMDB-B and
Collab have the highest over-squashing intensities (0.31 and 0.25,
respectively) over all datasets, with Collab showing the highest
variability (0.19) and extremity (0.91). Reddit-B stands out as an
outlier with all metrics an order of magnitude lower (intensity: 0.02,

5Since prior work evaluated GTR only on graph classification, we also restrict our
study of it to that task.

SFor future work, one can easily extend our experiments to dynamic and training-time
rewiring methods. In this work, to avoid hyperparameter tuning or ad-hoc design
choices, we focused on the widely used methods, whose reported results are based on
a shared experimental setup.

"The code is available at https://github.com/Danial-sb/Over-Squashing-Measurement.
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(a) Graph classification task (b) Node classification task
Figure 1: Spearman correlation coefficients of treatment ef-
fects and performance gains for every metric-rewiring pair
in (a) graph- and (b) node-classification tasks. Each coeffi-
cient is computed over all GNN-baseline hyperparameter
configurations; an asterisk (*) indicates significance after
multiple-comparison correction. Negative values imply that
stronger mitigation (smaller treatment effects) aligns with
larger performance gains—the desirable direction.

variability: 0.02, extremity: 0.13), confirming it is far less affected.
Overall, social network datasets exhibit stronger over-squashing
measurements—particularly in intensity and extremity—than bioin-
formatics datasets.
Rewiring Effectiveness (Q2): Table 2 reports rewiring method’s
ATE across graph-classification datasets and shows that rewiring
generally reduces over-squashing (green markers ¢ dominate red
markers ¢ ). FoSR reduces all metrics across datasets with a few
exceptions on Collab and Reddit-B. It lowers prevalence by up to
—0.04 (Proteins), intensity by —0.14 (IMDB-B), variability by —0.04
(Proteins), and extremity by —0.08 (Enzymes). DIGL mitigates over-
squashing metrics in all datasets except Reddit-B, where intensity
(+0.057), variability (+0.062), and extremity (+0.63) worsen; else-
where, it reduces prevalence by 28-63%, intensity by 0.067-0.31,
variability by 0.064-0.19, and extremity by 0.27-0.90. SDRF and
GTR offer the weakest and most inconsistent effects. SDRF slightly
reduces prevalence and intensity in most datasets by up to —0.036
(in IMDB-B for prevalence), while GTR often increases all metrics by
up to +0.089 (in Mutag for intensity). BORF reduces over-squashing
in most cases, showing strong extremity reduction (up to —0.21 on
IMDB-B) and consistently lowering variability (—0.0026 to —0.37)
and intensity, while increasing prevalence in Proteins and Enzymes.
Treatment-effect rankings show DIGL as the strongest mitigator
in almost all cases, except four (three on Reddit-B). SDRF and GTR
are usually the least effective, with SDRF being weakest in variabil-
ity and extremity (on three datasets each) and GTR being worst for
prevalence (on three datasets) and intensity (on four datasets).
Averaged over datasets (Avg. ATE in Table 2), DIGL is most
effective (—40% prevalence, —0.13 intensity, and —0.31 extremity).
For variability, its effect is also close to the most effective strategy
(BORF with —0.11). SDRF and GTR are the least effective, with GTR
showing adverse effects on prevalence and intensity, and SDRF
performing worst in terms of variability and extremity. Overall,
aggressive densification (e.g., DIGL) alleviates over-squashing more
effectively than surgical or sparsity-preserving rewiring (e.g., FoSR,
SDRF, GTR, BORF).
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Table 2: Treatment effects (ATEs) for graph classification, averaged over each GNN baseline’s hyperparameter configuration.

For each dataset-metric combination, the background highlights the best and worst rewiring method. Desirable negative
ATEs are marked with ¢, and undesirable positive ATEs with . Gain is the percentage change in classification accuracy after
rewiring. T marks not statistically significant results. “Avg ATE” summarizes each method’s average effect across all datasets.

Rew. Dataset Average Treatment Effect Gain (%)
Prevalence Intensity Variability Extremity
Mutag —2.3e-2+6.3e-3 o —1.5e-2 £ 5.5e-3 o —2.7e-2 £ 9.3e-3 o —3.9e-2+2.1e-2 o 6.6 £ 6.5
Proteins —4.0e-2 £ 2.8e-2 o —3.1e-2 £ 1.3e-2 o —3.9e-2 £ 1.3e-2 o —7.5e-2 £3.7e-2 o 3.8+0.9
Enzymes —1.6e-2 +2.3e-2 o —2.2e-2+1.7e-2 o —3.7e-2 £ 2.2e-2 o —7.7e-2 £ 7.0e-2 o 1.6 +£6.0
FoSR  IMDB-B —1.2e-2+5.1e-3 o —lde-1+4.8e-2 o —2.2¢-2 + 1.4e-27e —1.4e-2+2.0e-0 o 4166
Collab 8.9e-3 + 1.0e-3 o —1.2e-2+£9.7¢-3 o —8.0e-3 +£8.9¢e-3 o —1.5e-2+2.7e-3 o 9.6 +18.2
Reddit-B 5.4e-4 + 1.2e-47 e 5.3e-3 £ 5.6e-3 ¢ 3.8e-3+3.1e-3 o 2.5e-2 + 2.0e-2 o 7.8 +12.7
Avg ATE —1.4e-2 £ 1.7e-2 o —3.6e-2 £ 5.2e-2 o —2.2e-2 £ 1.7e-2 o —3.3e-2 £3.9e-2 5.6 £2.9
Mutag —5.0e-1 £ 1.9e-1 ¢ —1.0e-1 £+ 1.3e-2 o —9.9e-2 £ 1.3e-2 o —4.2e-1 £ 6.6e-2 o 0.7+3.0
Proteins —3.4e-1+1.1e-1 ¢ —9.1e-2 £ 3.2e-2 —8.5e-2 £ 3.2e-2 o —3.3e-1 £ 1.5e-1 ¢ -0.2+0.9
Enzymes —2.8e-1+1.7e-1 o —6.7e-2 £ 4.6e-2 o —6.4e-2 £ 4.8e-2 o —2.7e-1 £ 2.3e-1 o 0.0+1.4
DIGL IMDB-B —6.3e-1 £ 0.0e0 e —3.1e-1 £ 0.0e0 e —1.6e-1 £0.0e0 e —5.5e-1 £ 0.0e0 e -2.9+33
Collab —5.4e-1 £ 1.5e-2 —2.6e-1 £ 5.8¢e-4 ¢ —1.9e-1+1.1e-3 ¢ —9.0e-1 £ 1.3e-2 ¢ —-18.2+ 1.1
Reddit-B —9.4e-2 £ 5.9e-2 o 5.7e-2 + 1.2e-2 o 6.2e-2 + 1.1e-2 o 6.3e-1 + 9.0e-2 o —-13.3+3.6
Avg ATE —4.0e-1 £+ 1.8e-1 ¢ —1.3e-1+1.2e-1 ¢ —8.9e-2 £ 8.8e-2 o —3.1le-1 £ 4.7e-1 » -5.6+7.4
Mutag —1.0e-2 £ 0.0e0 e 2.3e-3+0.0e0 e 2.9e-3+0.0e0 e 2.4e-2+0.0e0 e -05+14
Proteins —2.3e-2+6.1e-3 o —3.9¢-4 + 1.6e-47 e 3.6e-3 + 2.0e-3 o 1.2e-2 +3.8e-3 o —-0.3+0.5
Enzymes —1.3e-2+0.0e0 o —3.1e-4 £ 0.0e0" o —2.4e-3 £0.0e0 o 1.3e-2 £ 0.0e0" o 20+2.0
SDRF  IMDB-B —3.6e-2 + 2.6e-2 o —4.4e-2+2.8e-2 o 1.9e-2 + 8.7e-3Te 1.3e-1+23e-2 1.0+1.9
Collab 5.5e-3 + 1.2e-3 o —1.7e-2 £ 9.8¢-3 o —5.6e-3 +3.4e-3 o —3.7e-2 + 1.6e-2 o 8.8+17.2
Reddit-B —3.1e-3 + 2.9e-3Te —1.1e-4 + 1.1e-3Te —6.5e-4 + 7.7e-4Te —2.9e-4 + 2.7e-3Te —25+43
Avg ATE —1.3e-2 £ 1.5e-2 —9.9e-3 £ 1.8e-2 o 2.8e-3 + 8.6e-3 o 2.4e-2 + 5.6e-2 o 1.4+3.6
Mutag —1.4e-3 + 4.6e-2 o 8.9e-2 + 3.6e-2 o 1.2e-2+2.2e-2 o 5.4e-2 + 6.4e-2 o 6.5+7.1
Proteins —7.6e-3 £ 1.8e-2 o —2.9e-3 + 6.6e-3 o —4.0e-2 + 7.4e-3 o —9.4e-2 £ 3.2e-2 o 3.8+2.2
Enzymes l.1e-2 £ 1.3e-2 o 1.3e-2 £ 4.5e-3 o —3.2e-2+4.7e-3 ¢ —8.0e-2 + 2.0e-2 ¢ 51+7.9
GTR IMDB-B —2.3e-2 £ 6.3e-3 o —1.5e-2 £5.5e-3 o —2.7e-2 £ 9.4e-3 o —3.9e-2 £ 2.1e-2 o 4.7+6.9
Collab 1.5e-2 + 1.8e-3 e 9.0e-4 + 1.3e-3 o —8.8e-4 + 2.3e-4 o 1.6e-2 + 1.0e-2 e 04+1.1
Reddit-B 1.9e-2 £5.0e-4 ¢ 1.4e-2 +3.0e-3 o 9.2e-3 + 1.4e-3 o 4.5e-2 + 1.0e-2 ¢ 8.4 +14.6
Avg ATE 2.2e-3 + 1.5e-2 o 1.7e-2 £ 3.4e-2 o —1.3e-2+2.1e-2 ¢ —1.6e-2 +5.8e-2 ¢ 4.8+2.5
Mutag —8.0e-2 £ 1.2e-2 —2.8e-2 £ 2.5e-2 o —2.6e-3 £3.3e-3 o —1.3e-1+1.3e-1 25+138
Proteins 1.5e-2 +£ 6.3e-3 o —6.4e-3 + 2.8e-3 o —2.4e-2+1.1e-2 ¢ —1.3e-1+3.1e-2 o 0.4+0.1
BORF Enzymes 2.1e-2 + 2.5e-2 o —3.5e-2 £ 1.3e-3 o —2.9e-2 +1.4e-4 » —1.4e-1+1.8e-2 ¢ 1.0+1.1
IMDB-B —5.1e-2 £ 0.0e0 e —7.6e-2 £ 0.0e0 e —3.7e-1 £ 0.0e0 e —2.1e-1+9.9e-2 o 09+1.0
Avg ATE —2.4e-2 £ 4.5e-2 o —3.6e-2£29e-2 o —1.1e-1 £ 1.8e-1 » —1.5e-1+3.9e-2 ¢ 1.2+0.9

Rewiring vs. Performance (Q3): To assess which rewiring strat-
egy best improves performance, we compute Spearman’s corre-
lation coefficient p between each ATE metric and performance
gain for every method (see Figure 1a). A p < 0 indicates a de-
sirable outcome, where reduced over-squashing (i.e., lower ATE)
aligns with improved generalization. FoSR is the most effective at
translating over-squashing mitigation into performance gains, with
mostly moderate correlations: prevalence (p = —0.49, moderate),
intensity (p = —0.38, moderate), variability (p = —0.34, moderate),

and extremity (p = —0.25, weak).8 BORF also shows negative (but
comparatively weaker) correlations. SDRF and GTR show largely
negligible and mixed correlations. Although DIGL achieves the
greatest over-squashing reduction (see Q2), three metrics show
positive correlations with performance gains, indicating that lower
ATE values do not translate into higher performance. This paradox
might be explained by DIGL’s heavy edge addition, thus disrupting
the graph’s original topology, weakening the local-message-passing

8Correlation strengths follows Cohen’s convention [12]: weak for p < 0.30, moderate
for 0.30 < p < 0.50, and strong for p > 0.50.
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Table 3: Graph dataset responsiveness to rewiring (percent-
ages). Negatives are desirable mitigation (metric decreases),
whereas positives indicate increases. Text color denote most,

second-most, , and worst responsiveness.

Dataset  Prevalence  Intensity  Variability = Extremity
Mutag —20.2 =273 —22.7 =22.0
Proteins -13.2 -19.0 —27.6 -21.0
Enzymes

IMDB-B -23.9 -38.5 —-70.1 —25.5
Collab =233 —28.1 —28.4 =253
Reddit-B -4.0 +96.9 +101.1 +125.9

inductive bias, and inducing over-smoothing.? Overall, only FoSR—
and, to a lesser extent, BORF—translated reduced over-squashing
into performance gains, whereas SDRF and GTR have negligible
impact and DIGL’s notable reductions fail to improve performance,
underscoring its susceptibility to over-smoothing and the disrup-
tion of the graph’s original topology and inductive bias.

Dataset Treatment Responsiveness (Q4): Table 3 presents the
dataset-level responsiveness to rewiring—defined as the ratio of av-
erage treatment effects (across methods) to the original dataset over-
squashing measurement. Negative values indicate over-squashing
mitigation, where positive values show an increase in the over-
squashing metric. Social network datasets IMDB-B and Collab are
the most responsive to rewiring. IMDB-B records the largest re-
ductions in all metrics: prevalence by —23.9%, intensity by —38.5%,
variability by —70.1%, and extremity by —25.5%. Collab follows
closely, ranking second in all metrics. In contrast, Reddit-B re-
sists mitigation the most: it ranks last across all metrics and is
the only dataset where rewiring worsens over-squashing . We hy-
pothesize that this is due to disconnected components within each
graph, where rewiring inadvertently introduces new bottlenecks.
Among the bioinformatic datasets,Mutag exhibits the most consis-
tent responsiveness. Proteins is slightly less responsive, especially
in prevalence (—13.2%) and intensity (—19.0%). Enzymes presents
the weakest responsiveness among the three, with smaller and
second-worst reductions in all four metrics: —9.1% in prevalence,
—16.9% in intensity, —20.2% in variability, and —18.5% in extremity
.Overall, these results suggest that connected social graphs with
dense community structure (Collab and IMDB-B) benefit most from
rewiring, while large, disconnected networks such as Reddit-B—and
to a lesser extent molecular graphs—pose greater challenges for
over-squashing mitigation.'

4.3 Results on Node Classification Tasks

We report our results for Q1-Q4 of node classification.

Dataset Over-Squashing Levels (Q1): Table 4 shows that over-
squashing is generally weak across datasets and metrics. Cornell,
Texas, and Wisconsin display the highest prevalence (0.50-0.55,
large), but with low intensity (0.006-0.009), variability (0.005-0.008),

Previous work has also linked DIGL to over-smoothing [11, 20].
198ee the number of connected components of each dataset in Table 1, which supports
this argument.
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Table 4: Statistics of node-classification datasets. Color cod-
ing: weak/low/small , moderate , and strong/high/large .

Statistic ~ Cornell Texas Wiscon. Cora Citeseer Chamel.
5 #Nodes 140 135 184 2485 2120 832
é_ #Edges 219 251 362 5096 3679 12355
=]

& Diameter 8 8 8 19 28 11

2 Prevalence 5.47e-1 5.02e-1 5.46e-1 1.52e-2 1.84e-3 2.03e-1
g Intensity  8.99e-3 6.20e-3 7.95e-3 3.63e-2 3.09e-4 1.42e-1
iVariability 8.02e-3 5.72e-3 8.0le-3 2.59e-2 1.76e-3 8.37e-2
S Extremity 1.14e-1 8.04e-2 1.09e-1 2.04e-1 1.84e-2 3.94e-1

and extremity (0.08-0.11), indicating widespread yet mild compres-
sion. Chameleon has the highest intensity (0.14, moderate) and
extremity (0.39, strong), but with low prevalence (20%, small), sug-
gesting severe, uneven bottlenecks over a small subset of pairs—
making it a suitable benchmark for mitigation studies. Cora and
Citeseer show the lowest prevalence (0.015 and 0.002, respectively),
along with the lowest intensity and variability, indicating minimal
over-squashing. Comparing Tables 1 and 4, graph-task datasets are
more susceptible to over-squashing than node-task datasets.
Rewiring Effectiveness (Q2): Table 5 shows in node-classification
tasks, rewiring more often increases over-squashing (red markers,
¢) than reduces it (green markers, ¢ )—the opposite of the trend
observed in graph-classification benchmarks. FoSR generally raises
the metrics, with only a few exceptions all of which are weak
treatment effects. DIGL also increases over-squashing in five of the
six datasets; Wisconsin is the exception with the weak treatment
effects. SDRF has a near-zero impact, with changes mostly on the
order of 107® to 1072). These negligible effects have improved
over-squashing just for Wisconsin and Chameleon. BORF exhibits
mixed behavior, improving over-squashing for some metrics in
some datasets while worsening others.

By treatment-effect ranking, DIGL performs the worst in most
datasets/metrics—except in Wisconsin, where it ranks best across all
metrics. BORF ranks best for intensity, variability, and extremity in
Citeseer, Texas, and Chameleon, while FoSR is best for these metrics
in Cora and Cornell. In Wisconsin, FoSR is the worst overall metric.

Aggregating effects across datasets (AVG ITE in Table 5), DIGL
has the strongest adverse effects (prevalence +0.15, intensity +0.1,
variability +0.09, and extremity +1.1 on average), being worst in
all metrics except variability. SDRF has a near-negligible impact: it
slightly increases all four metrics (worsens over-squashing), yet its
increments in intensity, variability, and extremity are the smallest
among the other methods, making it the “least harmful” of the
rewiring options. BORF shows a mixed pattern: it slightly lowers
prevalence (-0.011, the best among all methods) but sharply in-
creases extremity (+0.37) and variability (+0.11, the worst), indicat-
ing reduced global compression at the cost of new local bottlenecks.

Overall, as node-classification benchmarks are structurally less
prone to over-squashing (Table 4), aggressive (e.g., DIGL) or even
moderate (e.g, SDRF and BORF) rewiring is often ineffective or
counterproductive. While added connectivity relieves bottlenecks
in graph-classification benchmarks with high over-squashing, it
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Table 5: Treatment effects (ITEs) for node classification, averaged over each GNN baseline’s hyperparameter configuration.

For each dataset-metric combination, the background highlights the best and worst rewiring method. Desirable negative
ITEs are marked with ¢, and undesirable positive ITEs with ¢. Gain is the percentage change in classification accuracy after
rewiring. ¥ marks not statistically significant results. “Avg ITE” summarizes each method’s average effect across all datasets.

Rew. Dataset Individual Treatment Effect Gain (%)
Prevalence Intensity Variability Extremity
Cora 6.0e-4 + 2.2e-2 o —1.0e-2 £ 3.7e-2 o —4.5e-3 + 2.8e-2 o —6.1e-2 + 1.9e-1 o -0.9+0.1
Citeseer —8.1e-5 £ 3.0e-5 ¢ 9.4e-4 +4.9¢e-4 o 3.2e-3+1.2e-3 o 2.0e-2 +4.5e-3 o 1.2+1.7
Texas 7.5e-2 £ 5.0e-2 o 1.6e-2 £ 1.3e-3 1.2e-2 £ 9.9e-4 9.1e-2 +5.1e-2 o -23+£59
FoSR  Cornell 4.5e-2 + 6.3e-27 e 2.3e-2+4.4e-3 o 1.9e-2 £ 9.7e-2 o 1.4e-1+9.4e-2 o -1.1+0.3
Wiscon. 4.4e-2 +5.1e-2 o 1.3e-2 £ 1.9e-2 1.1e-2 £ 1.7e-2 o 1l.4e-1+1.7e-1 o 1.9+2.6
Chamel. 1.8e-1+ 1.0e-2 o 8.5e-3 +3.8e-3 o 2.8e-2+3.5e-4 o l.1e-1 + 1.6e-2 o -09+1.2
Avg ITE 5.7e-2 + 6.6e-2 o 8.6e-3 + 1.1e-2 o l.le-2+1.1e-2 o 7.3e-2+7.9e-2 o —-0.4+1.4
Cora 6.4e-1+0.0e0 o 2.0e-1 +0.0e0 e 1.6e-1 £ 0.0e0 e 2.2e0 £ 0.0e0 e 1.3+£0.0
Citeseer 1.8e-1+0.0e0 e 1.4e-1 £0.0e0 e 1.5e-2 £ 0.0e0 e 1.3e0 £ 0.0e0 e 1.0+ 0.0
Texas 3.3e-2+0.0e0 e 2.4e-2+0.0e0 e 3.8e-2 £ 0.0e0 e 3.0e-1+0.0e0 e —-0.8 £ 0.0
DIGL Cornell —3.0e-2 £ 0.0e0 o 2.0e-1+0.0e0 e 2.1e-1 £ 0.0e0 e 1.7e0 £ 0.0e0 e 5.0+ 0.0
Wiscon. —4.0e-1+0.0e0 e —7.4e-3 £ 0.0e0 e —7.4e-3 £ 0.0e0 e —1.0e-1 £ 0.0e0 e -2.4+£0.0
Chamel. 4.6e-1+£0.0e0 o 5.2e-2 +0.0e0 o 1.1e-1 £ 0.0e0 e 1.1e0 + 0.0e0 o -0.7+0.0
Avg ITE 1.5e-1 £ 3.7e-1 e 1.0e-1 £9.1e-2 e 8.8e-2 + 8.6e-2 o 1.1e0 + 7.8e-1 o 0.6 2.3
Cora 5.5e-6 £ 0.0e0 e 5.3e-5+0.0e0 e 3.2e-6 £ 0.0e0 e 1.9e-5+0.0e0 e 0.3+0.9
Citeseer’ N/A N/A N/A N/A N/A
Texas 1.2e-1 £0.0e0 e 2.2e-3+0.0e0 e 5.3e-3£0.0e0 e 8.7e-2 £ 0.0e0 e -1.8+2.1
SDRF  Cornell’ N/A N/A N/A N/A N/A
Wiscon. —5.2e-2 + 1.2e-1 o —1.2e-3 £2.9e-3 —5.1e-4 £ 2.2e-3 o 6.8e-3 + 4.0e-2 o 04+0.4
Chamel. —2.7e-4 + 1.2e-5 o —2.0e-4 £9.7e-5 o —1.9e-4 + 1.6e-4 o 5.8e-4 £ 9.4e-5 o 0.2+0.1
Avg ITE 1.7e-2 £ 6.3e-2 o 2.1e-4+1.2e-3 o 1.1e-3 £ 2.8e-3 e 2.4e-2 +3.7e-2 o -0.2+0.9
Cora —6.8e-5 + 1.4e-6 o —8.0e-4 £ 1.0e-4 o 1.7e-4 £ 2.7e-5 o 1.2e-2 +2.1e-4 o 23+21
Citeseer 2.0e-6 +9.9e-7" e —3.3e-6+2.3e-67 e —9.2e-6 £ 6.4e-6 ¢ 0.0e0 + 0.0e0 o 2.7+£1.6
Texas 3.7e-2 + 6.8e-2 o 7.6e-4 + 8.7e-4 o 8.4e-4 + 1.5e-3 o 2.6e-2 +4.7e-2 o 7.4 +3.1
BORF  Cornell —6.0e-2 + 2.7e-2 o 6.8e-2 + 1.5e-2 o 6.9e-1 +3.9¢e-1 o 2.3e0 + 7.8e-2 o 10.7 £ 2.0
Wiscon. —3.1e-2+ 1.1e-2 o 3.3e-4+ 1.0e-4 —9.5e-4 £ 5.4e-4 —9.9e-3 £ 2.9e-3 o 6.1+0.5
Chamel. —8.2e-3 £ 1.4e-5 —3.3e-2 £ 5.7e-4 ¢ —2.1e-2 £ 2.8e-4 —9.9e-2 + 1.5e-3 o 4.8+35
Avg ITE —1.1e-2 £ 3.4e-2 o 5.8e-3 +£3.0e-2 o 1.1e-1 £ 2.8e-1 e 3.7e-1+ 8.6e-1 o 5.7+29

" No edges are added by SDRF on Citeseer and Cornell; consequently, no treatment effect can be computed (entries marked “N/A”). The performance change reported in the SDRF

paper stems from a different hyperparameter set rather than the rewiring itself.

often disrupts local structure in node-classification benchmarks
with low over-squashing, creating new compression pathways.

Rewiring vs. Performance (Q3): Figure 1b shows the correlation
coefficient p between each rewiring method’s treatment effect and
its performance changes. DIGL shows strong, significant positive
correlations for three metrics (p > 0.83), suggesting its performance
gains coincide with increased over-squashing. SDRF shows mod-
erate, non-significant negative correlations (p = —0.37); while in
the “right” direction, effects are too small to yield meaningful gains.
FoSR exhibits weak, non-significant negative correlations for most
metrics, indicating little potential performance gain. BORF mostly
shows non-significant positive correlations, implying its mitigation
may drop the performance. Overall, in node-classification bench-
marks, rewiring rarely improves performance by reducing over-
squashing. On the contrary, performance gains—particularly in

DIGL—often coincide with increased compression, suggesting that
other mechanisms (e.g., altered propagation patterns or smoothing
behavior) drive the improvements.

Dataset Treatment Responsiveness (Q4): Table 6 shows that no
dataset exhibit “true” responsiveness to over-squashing mitigation.
All values (except one) are positive, indicating that rewiring meth-
ods fail to reduce over-squashing and often worsen it. Citeseer is
the most extreme case,suggests followed by Cornell. These results
suggest that rewiring often introduces new bottlenecks in node
classification tasks, rather than relieving them.

4.4 Discussion: Graph vs. Node Classification

Dataset Over-Squashing Levels (Q1): Graph-classification datasets
exhibit substantially higher levels of over-squashing than node-
classification ones (compare Tables 1 and 4). Hence, over-squashing
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Table 6: Responsiveness Node datasets to rewiring (percent-
ages). Negatives are desirable mitigation (metric decreases),
whereas positives indicate increases. Text color denote most,
second-most, , and worst responsiveness.

Dataset Prevalence Intensity = Variability = Extremity
Cornell 2.7 3865.3

Texas 13.1 177.4 244.8 161.7
Wisconsin —-20.1 15.1 6.6 8.4
Cora 129.5 150.6 264.7
Citeseer 3260.9 15210.4 2391.3
Chameleon 78.8 4.8 34.6 71.1

is a core obstacle in graph classification datasets, but a more negli-
gible issue in node datasets—implying that mitigation efforts may
be more impactful for the former.

Rewiring Effectiveness (Q2): Rewiring mitigates over-squashing
in graph benchmarks, but is often harmful in node datasets. In graph
datasets, added connectivity—especially via DIGL’s dense rewiring—
consistently reduces over-squashing metrics. In node datasets, the
same interventions frequently worsen over-squashing, as already
balanced or mildly compressed structures (i.e., graphs with mini-
mal over-squashing) are disrupted, and new bottlenecks emerge.
This suggests that rewiring is beneficial only when over-squashing
is severe or moderate (e.g., graph datasets) and can be counter-
productive when over-squashing is low (most node datasets).
Rewiring vs. Performance (Q3): In graph-level benchmarks,
FoSR and BORF show negative correlations between reduced over-
squashing and improved accuracy, confirming that alleviating in-
formation bottlenecks enhances generalization. DIGL, despite large
reductions, fails to improve performance—likely due to aggres-
sive edge additions erasing topological information. In node-level
tasks, DIGL and BORF often improve performance while surpris-
ingly increasing over-squashing, suggesting that other factors (e.g.,
smoothing or altered message propagation) drive the gains. SDRF
and FoSR show no correlations. Overall, rewiring mitigation helps
performance when over-squashing is pronounced (as in most graph
datasets) and not overcorrecting (as in FoSR or BORF). By contrast,
when over-squashing is mild—as in typical node datasets—rewiring
rarely converts metric improvements into accuracy gains.
Dataset Responsiveness (Q4): Dataset responsiveness to rewiring
is pronounced in graph classification datasets but not in node classi-
fication datasets. In graph datasets, well-connected social networks
(i.e., Collab and IMDB-B) show the strongest responsiveness, and
bioinformatic graphs are moderately responsive. In node datasets,
rewiring rarely helps and often hurts. These findings suggest that
rewiring pays off only when over-squashing is severe and global,
but has limited or negative impact when compression is mild, un-
derscoring the need for dataset-aware interventions.

5 Conclusion and Future Work

We proposed topology-focused measurements for over-squashing,
built on its formal characterization by modeling the exponential
decay of node-pair sensitivity with increasing network depth. We
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extend our measurements to the graph-level measures and integrate
them into a causal inference framework to evaluate the effect of
rewiring on over-squashing. Our extensive empirical analyses show
that graph-classification datasets (except Reddit-B) suffer substan-
tial over-squashing and are generally responsive: rewiring lowers
our metrics and often boosts accuracy. Node-classification bench-
marks show little over-squashing; rewiring often increases com-
pression, and its performance effects are largely unrelated to over-
squashing. Our findings underscore the importance of applying
rewiring selectively, based on the presence of over-squashing. Fu-
ture work includes extending our experiments to dynamic rewiring
methods, exploring the relationship between negative decay rates
and over-smoothing, and designing novel rewiring methods guided
by our over-squashing measurement framework.

A Normalized Jacobian Norm Approximation

Proor. We derive an approximation of the relative Jacobian
norm J¢ (v, u) under the assumption of a linear message-passing
GNN. Let the ¢-th layer of a linear message-passing GNN be

HY = AH-Dw! ©)

where A = A + I is the self-loop-augmented adjacency matrix,
H(~1) stacks node embeddings of the layer £ — 1 as rows, and W’
is the learnable weight matrix of the ¢-th layer. Iterating from the
initial features H® gives

HO =A‘HOw, w=wOw®  w® @10
For any node v, its representation after ¢ layers is:
n
b = 3" (AD)uoh W, ()

u=1
where h,(lo) is the input feature row of node u. The Jacobian of hz(,[)
with respect to hl(lo) is then
an"
on®

= (AD)yyW € Rdoxde, (12)

Given that the matrix norms are homogeneous—for any scaler c,
[lc W|| = |c|||[W]||—we compute the Frobenius norm

on't)
ah(o)

u

= [(A)uoWI| = (A")uol W] (13)

To compute the relative Jacobian norm, we normalize by the
total sensitivity of v to all input nodes:

(t)

oh -

> o] DA, (14)
k k k

Canceling the common factor |[W]||, the relative Jacobian norm
simplifies to the exact expression:

(A[)MU

T =S A0
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grammar checking and suggesting alternative word choices. In
terms of coding, GenAlI tools were used primarily to assist with
writing documentation and resolving debugging issues. All core
research contributions, including the development of the method-
ology, design of experiments, analysis of results, and interpretation
of findings, were conceived and executed independently by the
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