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Abstract
Graph neural networks (GNNs) have exhibited state-of-the-art per-

formance across a wide range of domains. Yet message-passing

GNNs suffer from over-squashing—exponential compression of

long-range information from distant nodes—which limits expres-

sivity. Rewiring techniques can ease this bottleneck, but their prac-

tical impacts are unclear due to the lack of a direct empirical over-

squashing metric. We propose a topology-focused method for as-

sessing over-squashing between node pairs using the decay rate of

their mutual sensitivity. We then extend these pairwise assessments

to graph-level statistics. Coupling these metrics with a within-

graph causal design, we quantify how rewiring strategies affect

over-squashing on diverse graph- and node-classification bench-

marks. Our extensive empirical analyses show that most graph

classification datasets suffer from over-squashing (but to various

extents), and rewiring effectively mitigates it—though the degree

of mitigation, and its translation into performance gains, varies by

dataset and method. We also found that over-squashing is less no-

table in node classification datasets, where rewiring often increases

over-squashing, and performance variations are uncorrelated with

over-squashing changes. These findings suggest that rewiring is

most beneficial when over-squashing is both substantial and cor-

rected with restraint—while overly aggressive rewiring, or rewiring

applied to minimally over-squashed graphs, is unlikely to help and

may even harm performance. Our plug-and-play diagnostic tool

lets practitioners decide whether rewiring is likely to pay off.
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1 Introduction
Graph Neural Networks (GNNs) [18, 24, 31] have become a power-

ful learning framework for graph-structured data. Message-passing

Neural Networks (MPNNs) [17]—a prominent subclass of GNNs—

iteratively aggregate messages from neighboring nodes at each

layer, enabling information propagation across the graph through

layer stacking. To enable interactions between distant nodes, deeper

networks with more layers are often required [6]. However, as the

number of layers increases, the receptive field of each node (i.e., the

set of nodes that influence a node’s representation through message

passing) can expand rapidly, leading to excessive compression of

information into fixed-size node representations. This phenome-

non, known as over-squashing [3], ultimately hampers effective

information flow and learning.

As over-squashing is strongly connected with the topological

properties of input graphs (e.g., commute time and effective re-

sistance [7, 13]) , most of its mitigation approaches are rewiring

techniques [3, 4, 16, 26, 33] , which modify a graph’s connectivity

to improve information flow between distant, weakly connected

nodes. Despite its promise, the effectiveness of rewiring techniques

remains challenging to assess due to the absence of a direct, empir-

ical measure of over-squashing. The Jacobian norm offers a formal

foundation for measuring over-squashing, but it is computationally

prohibitive, and does not isolate the graph’s topology effect on

over-squashing due to its high dependency on the model’s choices

and parameters. Due to these limitations, effective resistance has

emerged as a proxy [7, 13], which offers relative insights—e.g.,

which of two node-pairs (or two graphs) is more susceptible to

suffering over-squashing. However, this measurement lacks a clear

threshold to identify (e.g., whether or not over-squashing occurs

for a node pair or a graph) or quantify the extent of over-squashing.

This ambiguity obscures the need or justification for rewiring as

an over-squashing mitigation strategy.

To tackle these challenges, we propose a topology-focused mea-

surement framework for over-squashing built upon a formal charac-

terization of over-squashing—rather than being a proxy. We quan-

tify pairwise over-squashing by modeling node-pair sensitivity ex-

ponentially decaying with the model depth (i.e., number of layers).

This assumption mirrors the over-squashing theoretical definitions

of Topping et al. [33], which show that sensitivity diminishes rapidly

along long paths in over-squashed graphs. Using decay rates of

node pairs as a direct and interpretable indicator of over-squashing,

we derive graph-level over-squashing metrics and then leverage

them in a causal inference framework to evaluate the rewiring ef-

fectiveness for over-squashing mitigation. This enables a rigorous

evaluation of rewiring strategies on over-squashing across a diverse

range of graph and node classification tasks.

https://doi.org/10.1145/3746252.3761157
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We applied our measurement framework to address four key

questions across node- and graph-classification tasks: (extent) How
much over-squashing does each dataset exhibit?; (mitigation) How
effectively do current rewiring methods reduce it?; (translation) Do
these reductions translate into performance gains?; and (respon-
siveness) How responsive is each dataset to over-squashing miti-

gation? Our results show that most graph classification datasets

suffer from substantial over-squashing, making rewiring a sensi-

ble intervention. Among the rewiring strategies, DIGL [16] is the

most effective in mitigating over-squashing, yet FoSR [20] and

BORF [26] exhibit stronger correlations between over-squashing

reduction and performance improvements (i.e., more effective in

translation). Every graph dataset is responsive—over-squashing

falls after rewiring—except Reddit-B, which is counter-responsive.

In most node-classification datasets, rewiring often increases over-

squashing, and performance changes are independent of it (i.e.,

no translation). Also, node datasets are mostly counter-responsive

to the rewiring. Our findings suggest rewiring is most effective

when over-squashing is significant, as in most graph-classification

datasets, and less justified when over-squashing is minimal (as in

most node-classification datasets). Our plug-and-play diagnostic

framework enables practitioners to quantify over-squashing and

decide—before expending training cycles—on applying rewiring.

2 Preliminaries and Related Work
We consider an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes and

𝑚 edges, represented by its adjacency matrix A ∈ R𝑛×𝑛
. To in-

clude self-loops, we define Ã = A + I, with I ∈ R𝑛×𝑛
being the

identity matrix. Each node 𝑣 has a 𝑑-dimensional feature vector

x𝑣 ∈ R𝑑 . Message-Passing Neural Networks (MPNNs) propagate

information through the graph by the 𝐿-stack of graph convolution

layers (or message-passing layers), where 𝐿 represents the depth

of the model. Each layer ℓ is composed of the aggregator agg
(ℓ )

function (e.g., mean) and update up
(ℓ )

function (e.g., MLP). Node

𝑣 ’s representation h(ℓ )𝑣 at layer ℓ is updated by

h(ℓ )𝑣 = up
(ℓ )

(
h(ℓ−1)𝑣 , agg(ℓ )

(
{h(ℓ−1)𝑢 : 𝑢 ∈ 𝑁𝑣}

))
, (1)

where 𝑁𝑣 = {𝑢 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸} denotes the 1-hop neighborhood

of node 𝑣 . The number of layers 𝐿 (i.e., model depth) determines

how far information flows across the graph, defining the receptive
field for each node 𝑣—the set of nodes whose initial features (at

layer 0) can influence 𝑣 ’s final representation h(𝐿)𝑣 . As each layer

propagates information one hop further, the receptive field grows

with depth.

Over-Squashing.When a task relies on long-range information

exchange between distant node pairs, effective information prop-

agation requires the model depth 𝐿 to be at least as large as the

geodesic distance between nodes, allowing them to fall within

each other’s receptive fields. However, in most real-world graphs,

receptive fields grow exponentially with the number of layers, forc-

ing MPNNs to compress increasingly large sets of node features

into fixed-width node embeddings. This excessive compression

leads to information loss and reduces the model’s expressivity, a

phenomenon known as over-squashing [3]. The over-squashing of

information can be understood by assessing the sensitivity of node

𝑣 ’s representation after ℓ layers of message passing to node 𝑢’s

input feature h(0)𝑢 through the absolute Jacobian’s norm [33]:
1

Jℓ (𝑣,𝑢) = ∥𝜕h(ℓ )𝑣 /𝜕h(0)𝑢 ∥ . (2)

Of special interest for assessing over-squashing is normalized Jaco-
bian’s norm

˜Jℓ (𝑣,𝑢) =
Jℓ (𝑣,𝑢)∑
𝑘 Jℓ (𝑣, 𝑘)

, (3)

which measures relative sensitivity [33, 37]—the sensitivity of node

𝑣 ’s feature at layer ℓ to node 𝑢’s initial feature, relative to 𝑣 ’s sen-

sitivity to all nodes. Without this normalization, the model might

overestimate a node’s sensitivity based solely on its absolute Ja-

cobian norm. A small
˜Jℓ (𝑣,𝑢) indicates that node 𝑣 is negligibly

sensitive to node 𝑢, signaling over-squashing. In severe cases—e.g.,

tree-like graphs [33]—both Jℓ (𝑣,𝑢) and ˜Jℓ (𝑣,𝑢) decay exponen-

tially with ℓ , causing sensitivity to vanish. This vanishing sensitivity

reflects the progressive suppression of messages from 𝑢 at 𝑣 , a sig-

nature of over-squashing. Our over-squashing measures build upon

the theoretical characterization of
˜Jℓ (𝑣,𝑢), which links the decay

of pairwise sensitivity in node embeddings to the number of GNN

layers and the graph’s topology.

Over-Squashing Measurement. The Jacobian norm (and its vari-

ants) is a principled measure of over-squashing, but has practical

shortcomings. (i) It is computationally prohibitive: for 𝑛 nodes with

feature dimension 𝑑 , the full Jacobian is an (𝑛𝑑) × (𝑛𝑑) matrix,

requiring 𝑂 (𝑛2𝑑2) memory and time. (ii) It is parameter-dependent,
varying with weight updates and model-specific hyperparameters

(e.g., hidden size). (iii) It fails to isolate the graph’s topological

effects, being highly dependent on model choices and parameters.

To focus more directly on graph topology, recent work resorts

to measuring over-squashing through the lens of effective resis-

tance [7, 13]. Node pairs with high effective resistance are more

susceptible to over-squashing [7, 13], and a graph’s total effective

resistance serves as a global proxy for over-squashing. However,

effective resistance has key limitations: (a) it only allows relative

comparisons—offering no threshold for when, or how severely,

over-squashing occurs; (b) Though related to over-squashing, the

effective resistance is not derived from its formal characterizations

(e.g.,
˜Jℓ (𝑣,𝑢)), leaving uncertainty about whether a given pair is

truly over-squashed. To avoid these shortcomings, we approximate

the relative Jacobian norm directly, yielding a measure that is both

topology-centered and largely model-agnostic without the heavy

computational cost of full Jacobian computation.

Rewiring. Rewiring—the primary mitigation for over-squashing

[3]—modifies a graph’s edges while keeping its nodes unchanged to

improve information flow. Spatial connectivity methods add edges

to shorten distances by including virtual nodes [10, 32], leverag-

ing higher-order structures [8, 9], fully connecting the last GNN

layer [3], or linking nodes within certain distances or across layers

[1, 2, 5, 15, 16, 19, 27, 34]; Graph Transformers take this to the ex-

treme by connecting all nodes via attention-based edges [21, 28, 38].

Other approaches optimize graph-theoretical properties to reduce

topological bottlenecks: SDRF [33] adds edges in low-curvature

regions, BORF [26] adds in minimally curved regions and prunes

1
Some use the term influence for the same Jacobian-based norm quantity; we adopt

sensitivity throughout for consistency.
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highly curved edges, FoSR [20] maximizes the spectral gap, GTR [7]

minimizes total effective resistance, and DIGL [16] applies diffusion-

based rewiring (e.g., personalized PageRank, heat kernel) followed

by sparsification.

While rewiring aims tomitigate over-squashing, its true impact is

unclear; performance gains may arise from reduced over-squashing

or confounding factors such as implicit regularization or altered

graph smoothness. To disentangle these effects, we propose a mea-

surement framework using causal inference to evaluate rewiring

interventions.

3 Measurement and Causality Framework
We first propose a method to measure pairwise over-squashing,

extend it to graph-level metrics, and then apply these metrics to

causally evaluate the impact of rewiring.

3.1 Pairwise Over-Squashing Measurement
Our goal is to derive a pairwise over-squashing measure between

node pairs in a graph that is (i) computed once per graph, (ii) aligned

with the relative Jacobian norm as a foundation for measuring over-

squashing, (iii) focused on graph topology, (iv) dependent only on

model depth as a contributing factor,
2
and (v) theoretically-founded

on the rigorous definition of over-squashing. We achieve (i–iv) by

introducing approximations to relative Jacobian norms, and (v) by

considering the exponential decay rate.

Approximation to Normalized Jacobian Norm. To quantify

over-squashing, we focus on the relative Jacobian norm
˜Jℓ (𝑣,𝑢),

which measures node 𝑣 ’s sensitivity to node 𝑢 as a fraction of its

total sensitivity to all nodes, overcoming the limitation of the ab-

solute norm J ℓ (𝑣,𝑢) that ignores total information received by 𝑣 .

Directly computing
˜Jℓ (𝑣,𝑢) is prohibitively expensive and must

be recomputed with any change in model parameters or hyperpa-

rameters, conflating topological effects with model-level factors. To

address these issues, we introduce:

Proposition 3.1 (Approximation of the Normalized Jaco-

bian Norm). Let Ã = A + I be the adjacency matrix of an undirected
graph augmented with self-loops , and assume a linear message-
passing GNN. Then, for any pair of nodes 𝑢, 𝑣 and layer depth ℓ ≥ 0,
the normalized Jacobian norm can be written as

˜Jℓ (𝑣,𝑢) =
Ãℓ
𝑢𝑣∑

𝑘 Ãℓ
𝑘𝑣

, (4)

where Ãℓ
𝑢𝑣 is the (𝑢, 𝑣)-entry of Ã to the power ℓ .

Remark. Self-loops guarantee reachability for every choice of ℓ : e.g.,
in a dyad (two nodes joined by one edge), walks of even length

between the nodes vanish without self-loops, but Ã ensures non-

zero counts for all ℓ .

The proof of this proposition is in Appendix A. In practice, GNNs

typically include nonlinearities (e.g., ReLU), which yield computa-

tion of nontrivial Jacobians that require recursive application of

the chain rule . Moreover, certain paths in the computational graph

may become inactive (e.g., due to ReLU zeroing gradients), making

2
Model depth is necessary for any over-squashing measurement as the definition of

over-squashing is based on it: the progressive compression of information as the model

depth increases (i.e., the number of message-passing layers grows).

exact computation intractable. Thus, equality no longer holds for

nonlinear MPNNs. However, linear MPNNs are empirically compet-

itive and theoretically well-founded [14, 22, 29, 36], and omitting

nonlinearity helps remove model-specific factors (see the proof of

Proposition 3.1), enabling a sensitivity measure that reflects only

the graph structure and the depth. We approximate the nonlinear

normalized Jacobian’s norm using its simplified single-computation

form in Eq. 4, and henceforth denote this approximation as
˜Jℓ (𝑣,𝑢).

This approximation satisfies our design criteria outlined earlier: it is

once-pre-computed (criterion i), derived from normalized Jacobian

norms under some simplification assumptions (i.e., removing non-

linearities) (criterion ii), and only dependent on graph topology

Ã and the layer depth ℓ , remaining mainly topology-focused and

model-agnostic (criteria iii and iv).

Exponential Decay Rate as an Over-Squashing Indicator. A
key signature of over-squashing is the rapid decay of sensitivity

(e.g., normalized Jacobian norms) with increasing model depth

ℓ . For rigor, we model this decay as exponential, similar to Di

Giovanni et al. [13], and consistent with theoretical observations

in tree-like graphs [33], where both Jℓ (𝑣,𝑢) and ˜Jℓ (𝑣,𝑢) diminish

exponentially with ℓ , leading to vanishing sensitivity:

˜Jℓ (𝑣,𝑢) = 𝑁0𝑒
−𝑘𝑣𝑢 ℓ , (5)

where 𝑁0 = ˜J0 (𝑣,𝑢) is the initial sensitivity (ℓ = 0), and 𝑘𝑣𝑢 is the

decay rate specific to the pair (𝑣,𝑢).3 A positive 𝑘𝑣𝑢 indicates over-

squashing, with larger values reflecting stronger decay. Taking the

natural logarithm linearizes this relationship:

ln
˜Jℓ (𝑣,𝑢) = ln𝑁0 − 𝑘𝑣𝑢 ℓ . (6)

To estimate 𝑘𝑣𝑢 , we fit a linear regression model of ln
˜Jℓ (𝑣,𝑢)

against ℓ , where the slope corresponds to −𝑘𝑣𝑢 . A negative slope

(i.e., positive 𝑘𝑣𝑢 ) confirms exponential decay, with the magnitude

of 𝑘𝑣𝑢 reflecting the severity of over-squashing.
4
Following Di Gio-

vanni et al. [13], we change ℓ in the interval [D, 2D − 1], where 𝐷
is the graph diameter, ensuring reachability for any pair of nodes.

3.2 Graph-Level Over-Squashing Measurement
To derive a graph-level assessment, we summarize the distribution

of positive decay rates using four statistics:

• Prevalence is the fraction of node pairs with positive decay

rates (𝑘𝑣𝑢 > 0). It reflects the spread of over-squashing across
the graph.

• Intensity is the average of all positive decay rates, indicating
the typical strength of over-squashing among affected node

pairs.

• Variability is the standard deviation of positive decay rates,

measuring the consistency or disparity in over-squashing

strength across node pairs.

• Extremity is the largest observed positive decay rate in the

graph, capturing the worst-case over-squashing instance.

3
The decay rates 𝑘𝑣𝑢 and 𝑘𝑢𝑣 need not be equal because the number of length-ℓ walks

that reach the target node can differ for 𝑣 and 𝑢. For instance, in a star graph with

center 𝑣 and a leaf 𝑢, we have ˜J1 (𝑣,𝑢 ) ≠ ˜J1 (𝑢, 𝑣) since (∑𝑘 𝐴̃
1

𝑘𝑣
≠
∑

𝑘 𝐴̃
1

𝑘𝑢
) .

4
For pairwise analyses, one can use statistics such as 𝑅2

and 𝑝-values to assess model

fit and decay trend significance. However, since our focus is on graph-level over-

squashing, we aggregate pairwise decay rates into graph-level metrics and evaluate

statistical significance within our causal framework.
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For datasets involving multiple graphs, we compute dataset-level

summaries by averaging each metric over all graphs. For ease of

interpretation, we sometimes map each graph-level statistic into

three ordinal categories. Intensity and Extremity categorized as

weak (< 0.13), moderate (0.13–0.23), strong (> 0.23), based on

corresponding pairwise sensitivity half-lives of ≥ 5, 3–5, and < 3

layers, respectively (i.e., the number of layers needed for sensitivity

to halve). Under the same thresholds, variability is classified as

low (< 0.13), moderate (0.13–0.23), high (> 0.23). Prevalence is

grouped as small (<25%),moderate (25−50%), large (>50%); these
cut-points align with intuitive quartile boundaries: fewer than one

quarter of node pairs indicates sparse over-squashing, 25–50% a

moderate regime, and more than 50% an affected majority.

3.3 Causal Estimation of Rewiring Effects
We evaluate the impact of a rewiring method R using our graph-

level over-squashing metrics (prevalence, intensity, variability, ex-

tremity) within a causal inference framework, where rewiring acts

as the treatment 𝑇 and our metrics are the outcomes. The treated
graph is R(𝐺) (𝑇 = 1) and the control graph is 𝐺 (𝑇 = 0). Out-

comes 𝑌M (𝐺) and 𝑌M (R(𝐺)) are measured for the control and

treated graphs, respectively, with M representing any of our over-

squashing metrics (e.g, prevalence, intensity, etc.). Treating each

graph as a unit, we compare it before and after rewiring to iso-

late rewiring effects from structural confounders (e.g., number of

nodes). To ensure valid causal attribution, we adopt standard causal

inference assumptions: SUTVA, Positivity, Exchangeability, and

Consistency—detailed in the full version of this paper [30].

We assess how a rewiring R influences the over-squashing mea-

surement M for a graph 𝐺 through Individual Treatment Effect
(ITE):

ITEM (𝐺,R) = 𝑌M (R(𝐺)) − 𝑌M (𝐺). (7)

For graph classification with a dataset of 𝑁 graphs D = {𝐺𝑖 }, we
compute the Average Treatment Effect (ATE) to quantify the overall

impact of rewiring R across the dataset:

ATEM (D,R) = 1

𝑁

𝑁∑︁
𝑖=1

ITEM (𝐺𝑖 ,R) . (8)

For each dataset, we evaluate the effect of rewiring R on prevalence,

intensity, variability, and extremity. A negative ATE/ITE indicates

mitigation. For example, a negative ATE on prevalence indicates

that rewiring reduces the number of over-squashed node pairs; a

negative ATE on intensity reflects a decrease in the average severity

of over-squashing; and a negative ATE on extremity suggests that

the most severe cases of over-squashing have been mitigated.

Statistical Significance of Treatment Effects. For graph classifi-

cation, we test ATE significance with a two-tailed 𝑡-test and apply

Bonferroni correction [35] to control for multiple comparisons. For

node classification, we assess ITE significance at the node-pair level:

prevalence is tested with McNemar’s test [23] for paired binary

data, and intensity with a paired 𝑡-test.

4 Experiments
We first measure over-squashing levels across datasets, then apply

our causal framework to assess how effectively rewiring mitigates

it in graph and node classification tasks.

Table 1: Statistics of graph-classification datasets, av-
eraged over all graphs in each dataset. Color coding:
weak/low/small , moderate , and strong/high/large .

Statistic Bioinformatics Social Networks

Mutag ProteinsEnzymes IMDB Collab Reddit

T
o
p
o
l
o
g
y

#Graphs 188 1109 600 1000 5000 2000

Nodes 18 39 33 20 74 430

Edges 28 92 78 106 2494 712

Diameter 8.21 11.56 10.89 1.86 1.86 9

Components 1.00 1.07 1.24 1.00 1.00 2.48

O
v
e
r
-
S
q
u
a
s
h
i
n
g Prevalence 5.93e-1 5.97e-1 6.03e-1 6.28e-1 5.57e-1 4.72e-1

Intensity 1.09e-1 1.37e-1 1.30e-1 3.12e-1 2.56e-1 1.96e-2

Variability 1.06e-1 1.34e-1 1.31e-1 1.57e-1 1.93e-1 1.88e-2

Extremity 4.54e-1 5.71e-1 5.96e-1 5.49e-1 9.10e-1 1.35e-1

4.1 Methodology and Experimental Setup
We discuss our experimental methodology, including empirical

research questions, datasets, rewiring baselines, hyperparameters,

measurements, and statistical tests.

Research Questions and their Importance. In our experiments,

we address four key questions for graph and node-level tasks:

• (Q1)How do over-squashing measurements (i.e., prevalence, in-
tensity, variability, and extremity) vary across datasets? Which
datasets are inherently most or least susceptible under each
measurement? This question identifies which datasets are

inherently more or less prone to over-squashing, guiding

benchmark selection for over-squashing research and the

necessity of mitigation strategies. It also informs whether

over-squashing trends are dataset- or domain-specific (e.g.,

social vs. biological networks).

• (Q2)What are the treatment effects of each rewiring method
across datasets? Which rewiring strategy most (or least) effec-
tively reduces over-squashing measurements? This question
quantifies the treatment effects of rewiring strategies and

enables their comparative “effective” ranking.

• (Q3)How do treatment effects correlate with performance gains
for a rewiring method over datasets? This evaluates if reduc-
ing over-squashing translates into improved generalization.

By assessing the correlation between treatment effects and

performance gains (i.e., the change in predictive performance

before and after rewiring), we distinguish rewiring meth-

ods that improve performance by mitigating over-squashing

from those whose gains are from other factors.

• (Q4)Which datasets are most responsive to rewiring—that is,
show the largest relative reductions (treatment effect divided
by the pre-treatment value)—and which are most resistant?
Answering this question sheds light on the inherent difficulty

of reducing over-squashing across different graph structures,

datasets, or domains.

Datasets. We study node and graph classification datasets com-

monly employed in over-squashing and rewiring research [3, 20,
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26, 32, 33]. Graph classification datasets are from the TUDataset

benchmark [25]: three bioinformatics datasets of Mutag, Enzymes,

and Proteins, and three social network datasets of IMDB-B, Collab,

and Reddit-B (see Table 1 for their statistics). For node classification,

we evaluate six datasets: Cora, Citeseer, Texas, Cornell, Wisconsin,

and Chameleon, analyzing only their largest connected component

(see Table 4 for statistics).

Rewiring Baselines (Subjects).We examine the effectiveness of

five rewiringmethods commonly used inmitigating over-squashing:

FoSR [20], DIGL [16], SDRF [33], GTR [7]
5
, and BORF [26].

6

Hyperparameters. Our measurement framework has a single

parameter—the message-passing depth ℓ—varied from the graph’s

diameter to twice its diameter [13]. Rewiring methods have their

own hyperparameters (e.g., iterations for FoSR/SDRF, edges added

or removed per iteration for BORF, edges added in GTR, sparsifi-

cation threshold for DIGL)—tuned for specific GNN architectures

(e.g., GCN, GIN). To control for this dependency, we evaluate each

method using all performance-optimal configurations from prior

work for each architecture—four for graph classification (GCN,

GIN, R-GCN, R-GIN) and two for node classification (GCN, GIN).

This avoids bias from a single configuration and ensures fair com-

parisons. Combinations not previously evaluated (e.g., BORF with

R-GCN/R-GIN, DIGL with node-level GIN) are omitted.

Measurements. To address Q1–Q4, we apply our over-squashing

measurement framework. For Q1, we measure over-squashing met-

rics (e.g., prevalence, intensity, etc.) on the original graphs (see

Tables 1 and 4). For Q2–Q4, we compute ITEM (𝐺,R) for node clas-
sification and ATEM (D,R) for graph classification. Each rewiring

method is evaluated using its performance-optimal, architecture-

specific hyperparameters, yielding one ATE/ITE per (method, archi-

tecture) pair. To control for architectural dependency and avoid bias

from any single configuration, we report aggregated ATE/ITE by

averaging across all relevant configurations. Statistical significance

is tested at 𝛼 = 0.05 with Bonferroni correction [35]. Performance

gains (i.e., the change in task performance before and after rewiring)

are taken from the original papers under the same replicated hy-

perparameter settings.
7

4.2 Results on Graph Classification Tasks
We report our results of Q1–4 for graph classification.

Dataset Over-Squashing Levels (Q1): Table 1 shows that over-
squashing prevalence is relatively consistent (55%–62%) across most

datasets, except for Reddit-B (47%). For other measures, the bioin-

formatic datasets have low intensity (0.10–0.13), low variability

(0.10–0.13), and high extremity (0.45–0.59). However, social net-

work datasets exhibit more severe over-squashing: IMDB-B and

Collab have the highest over-squashing intensities (0.31 and 0.25,

respectively) over all datasets, with Collab showing the highest

variability (0.19) and extremity (0.91). Reddit-B stands out as an

outlier with all metrics an order of magnitude lower (intensity: 0.02,

5
Since prior work evaluated GTR only on graph classification, we also restrict our

study of it to that task.

6
For future work, one can easily extend our experiments to dynamic and training-time

rewiring methods. In this work, to avoid hyperparameter tuning or ad-hoc design

choices, we focused on the widely used methods, whose reported results are based on

a shared experimental setup.

7
The code is available at https://github.com/Danial-sb/Over-Squashing-Measurement.
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Figure 1: Spearman correlation coefficients of treatment ef-
fects and performance gains for every metric–rewiring pair
in (a) graph- and (b) node-classification tasks. Each coeffi-
cient is computed over all GNN-baseline hyperparameter
configurations; an asterisk (*) indicates significance after
multiple-comparison correction. Negative values imply that
stronger mitigation (smaller treatment effects) aligns with
larger performance gains—the desirable direction.

variability: 0.02, extremity: 0.13), confirming it is far less affected.

Overall, social network datasets exhibit stronger over-squashing

measurements—particularly in intensity and extremity—than bioin-

formatics datasets.

Rewiring Effectiveness (Q2): Table 2 reports rewiring method’s

ATE across graph-classification datasets and shows that rewiring

generally reduces over-squashing (green markers • dominate red

markers • ). FoSR reduces all metrics across datasets with a few

exceptions on Collab and Reddit-B. It lowers prevalence by up to

−0.04 (Proteins), intensity by −0.14 (IMDB-B), variability by −0.04
(Proteins), and extremity by −0.08 (Enzymes). DIGL mitigates over-

squashing metrics in all datasets except Reddit-B, where intensity

(+0.057), variability (+0.062), and extremity (+0.63) worsen; else-
where, it reduces prevalence by 28–63%, intensity by 0.067–0.31,

variability by 0.064–0.19, and extremity by 0.27–0.90. SDRF and

GTR offer the weakest and most inconsistent effects. SDRF slightly

reduces prevalence and intensity in most datasets by up to −0.036
(in IMDB-B for prevalence), while GTR often increases all metrics by

up to +0.089 (in Mutag for intensity). BORF reduces over-squashing

in most cases, showing strong extremity reduction (up to −0.21 on
IMDB-B) and consistently lowering variability (−0.0026 to −0.37)
and intensity, while increasing prevalence in Proteins and Enzymes.

Treatment-effect rankings show DIGL as the strongest mitigator

in almost all cases, except four (three on Reddit-B). SDRF and GTR

are usually the least effective, with SDRF being weakest in variabil-

ity and extremity (on three datasets each) and GTR being worst for

prevalence (on three datasets) and intensity (on four datasets).

Averaged over datasets (Avg. ATE in Table 2), DIGL is most

effective (−40% prevalence, −0.13 intensity, and −0.31 extremity).

For variability, its effect is also close to the most effective strategy

(BORF with −0.11). SDRF and GTR are the least effective, with GTR

showing adverse effects on prevalence and intensity, and SDRF

performing worst in terms of variability and extremity. Overall,

aggressive densification (e.g., DIGL) alleviates over-squashing more

effectively than surgical or sparsity-preserving rewiring (e.g., FoSR,

SDRF, GTR, BORF).
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Table 2: Treatment effects (ATEs) for graph classification, averaged over each GNN baseline’s hyperparameter configuration.
For each dataset–metric combination, the background highlights the best and worst rewiring method. Desirable negative
ATEs are marked with • , and undesirable positive ATEs with • . Gain is the percentage change in classification accuracy after
rewiring. † marks not statistically significant results. “Avg ATE” summarizes each method’s average effect across all datasets.

Rew. Dataset Average Treatment Effect Gain (%)

Prevalence Intensity Variability Extremity

FoSR

Mutag −2.3e-2 ± 6.3e-3 • −1.5e-2 ± 5.5e-3 • −2.7e-2 ± 9.3e-3 • −3.9e-2 ± 2.1e-2 • 6.6 ± 6.5

Proteins −4.0e-2 ± 2.8e-2 • −3.1e-2 ± 1.3e-2 • −3.9e-2 ± 1.3e-2 • −7.5e-2 ± 3.7e-2 • 3.8 ± 0.9

Enzymes −1.6e-2 ± 2.3e-2 • −2.2e-2 ± 1.7e-2 • −3.7e-2 ± 2.2e-2 • −7.7e-2 ± 7.0e-2 • 1.6 ± 6.0

IMDB-B −1.2e-2 ± 5.1e-3 • −1.4e-1 ± 4.8e-2 • −2.2e-2 ± 1.4e-2†• −1.4e-2 ± 2.0e-0 • 4.1 ± 6.6

Collab 8.9e-3 ± 1.0e-3 • −1.2e-2 ± 9.7e-3 • −8.0e-3 ± 8.9e-3 • −1.5e-2 ± 2.7e-3 • 9.6 ± 18.2

Reddit-B 5.4e-4 ± 1.2e-4† • 5.3e-3 ± 5.6e-3 • 3.8e-3 ± 3.1e-3 • 2.5e-2 ± 2.0e-2 • 7.8 ± 12.7

Avg ATE −1.4e-2 ± 1.7e-2 • −3.6e-2 ± 5.2e-2 • −2.2e-2 ± 1.7e-2 • −3.3e-2 ± 3.9e-2 • 5.6 ± 2.9

DIGL

Mutag −5.0e-1 ± 1.9e-1 • −1.0e-1 ± 1.3e-2 • −9.9e-2 ± 1.3e-2 • −4.2e-1 ± 6.6e-2 • 0.7 ± 3.0

Proteins −3.4e-1 ± 1.1e-1 • −9.1e-2 ± 3.2e-2 • −8.5e-2 ± 3.2e-2 • −3.3e-1 ± 1.5e-1 • −0.2 ± 0.9

Enzymes −2.8e-1 ± 1.7e-1 • −6.7e-2 ± 4.6e-2 • −6.4e-2 ± 4.8e-2 • −2.7e-1 ± 2.3e-1 • 0.0 ± 1.4

IMDB-B −6.3e-1 ± 0.0e0 • −3.1e-1 ± 0.0e0 • −1.6e-1 ± 0.0e0 • −5.5e-1 ± 0.0e0 • −2.9 ± 3.3

Collab −5.4e-1 ± 1.5e-2 • −2.6e-1 ± 5.8e-4 • −1.9e-1 ± 1.1e-3 • −9.0e-1 ± 1.3e-2 • −18.2 ± 1.1

Reddit-B −9.4e-2 ± 5.9e-2 • 5.7e-2 ± 1.2e-2 • 6.2e-2 ± 1.1e-2 • 6.3e-1 ± 9.0e-2 • −13.3 ± 3.6

Avg ATE −4.0e-1 ± 1.8e-1 • −1.3e-1 ± 1.2e-1 • −8.9e-2 ± 8.8e-2 • −3.1e-1 ± 4.7e-1 • −5.6 ± 7.4

SDRF

Mutag −1.0e-2 ± 0.0e0 • 2.3e-3 ± 0.0e0 • 2.9e-3 ± 0.0e0 • 2.4e-2 ± 0.0e0 • −0.5 ± 1.4

Proteins −2.3e-2 ± 6.1e-3 • −3.9e-4 ± 1.6e-4†• 3.6e-3 ± 2.0e-3 • 1.2e-2 ± 3.8e-3 • −0.3 ± 0.5

Enzymes −1.3e-2 ± 0.0e0 • −3.1e-4 ± 0.0e0† • −2.4e-3 ± 0.0e0 • 1.3e-2 ± 0.0e0† • 2.0 ± 2.0

IMDB-B −3.6e-2 ± 2.6e-2 • −4.4e-2 ± 2.8e-2 • 1.9e-2 ± 8.7e-3†• 1.3e-1 ± 2.3e-2 • 1.0 ± 1.9

Collab 5.5e-3 ± 1.2e-3 • −1.7e-2 ± 9.8e-3 • −5.6e-3 ± 3.4e-3 • −3.7e-2 ± 1.6e-2 • 8.8 ± 17.2

Reddit-B −3.1e-3 ± 2.9e-3†• −1.1e-4 ± 1.1e-3†• −6.5e-4 ± 7.7e-4†• −2.9e-4 ± 2.7e-3†• −2.5 ± 4.3

Avg ATE −1.3e-2 ± 1.5e-2 • −9.9e-3 ± 1.8e-2 • 2.8e-3 ± 8.6e-3 • 2.4e-2 ± 5.6e-2 • 1.4 ± 3.6

GTR

Mutag −1.4e-3 ± 4.6e-2 • 8.9e-2 ± 3.6e-2 • 1.2e-2 ± 2.2e-2 • 5.4e-2 ± 6.4e-2 • 6.5 ± 7.1

Proteins −7.6e-3 ± 1.8e-2 • −2.9e-3 ± 6.6e-3 • −4.0e-2 ± 7.4e-3 • −9.4e-2 ± 3.2e-2 • 3.8 ± 2.2

Enzymes 1.1e-2 ± 1.3e-2 • 1.3e-2 ± 4.5e-3 • −3.2e-2 ± 4.7e-3 • −8.0e-2 ± 2.0e-2 • 5.1 ± 7.9

IMDB-B −2.3e-2 ± 6.3e-3 • −1.5e-2 ± 5.5e-3 • −2.7e-2 ± 9.4e-3 • −3.9e-2 ± 2.1e-2 • 4.7 ± 6.9

Collab 1.5e-2 ± 1.8e-3 • 9.0e-4 ± 1.3e-3 • −8.8e-4 ± 2.3e-4 • 1.6e-2 ± 1.0e-2 • 0.4 ± 1.1

Reddit-B 1.9e-2 ± 5.0e-4 • 1.4e-2 ± 3.0e-3 • 9.2e-3 ± 1.4e-3 • 4.5e-2 ± 1.0e-2 • 8.4 ± 14.6

Avg ATE 2.2e-3 ± 1.5e-2 • 1.7e-2 ± 3.4e-2 • −1.3e-2 ± 2.1e-2 • −1.6e-2 ± 5.8e-2 • 4.8 ± 2.5

BORF

Mutag −8.0e-2 ± 1.2e-2 • −2.8e-2 ± 2.5e-2 • −2.6e-3 ± 3.3e-3 • −1.3e-1 ± 1.3e-1 • 2.5 ± 1.8

Proteins 1.5e-2 ± 6.3e-3 • −6.4e-3 ± 2.8e-3 • −2.4e-2 ± 1.1e-2 • −1.3e-1 ± 3.1e-2 • 0.4 ± 0.1

Enzymes 2.1e-2 ± 2.5e-2 • −3.5e-2 ± 1.3e-3 • −2.9e-2 ± 1.4e-4 • −1.4e-1 ± 1.8e-2 • 1.0 ± 1.1

IMDB-B −5.1e-2 ± 0.0e0 • −7.6e-2 ± 0.0e0 • −3.7e-1 ± 0.0e0 • −2.1e-1 ± 9.9e-2 • 0.9 ± 1.0

Avg ATE −2.4e-2 ± 4.5e-2 • −3.6e-2 ± 2.9e-2 • −1.1e-1 ± 1.8e-1 • −1.5e-1 ± 3.9e-2 • 1.2 ± 0.9

Rewiring vs. Performance (Q3): To assess which rewiring strat-

egy best improves performance, we compute Spearman’s corre-

lation coefficient 𝜌 between each ATE metric and performance

gain for every method (see Figure 1a). A 𝜌 < 0 indicates a de-

sirable outcome, where reduced over-squashing (i.e., lower ATE)

aligns with improved generalization. FoSR is the most effective at

translating over-squashing mitigation into performance gains, with

mostly moderate correlations: prevalence (𝜌 = −0.49, moderate),

intensity (𝜌 = −0.38, moderate), variability (𝜌 = −0.34, moderate),

and extremity (𝜌 = −0.25, weak).8 BORF also shows negative (but

comparatively weaker) correlations. SDRF and GTR show largely

negligible and mixed correlations. Although DIGL achieves the

greatest over-squashing reduction (see Q2), three metrics show

positive correlations with performance gains, indicating that lower

ATE values do not translate into higher performance. This paradox

might be explained by DIGL’s heavy edge addition, thus disrupting

the graph’s original topology, weakening the local-message-passing

8
Correlation strengths follows Cohen’s convention [12]: weak for 𝜌 < 0.30, moderate
for 0.30 ≤ 𝜌 < 0.50, and strong for 𝜌 ≥ 0.50.
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Table 3: Graph dataset responsiveness to rewiring (percent-
ages). Negatives are desirable mitigation (metric decreases),
whereas positives indicate increases. Text color denote most,
second-most, second-worst, and worst responsiveness.

Dataset Prevalence Intensity Variability Extremity

Mutag −20.2 −27.3 −22.7 −22.0
Proteins −13.2 −19.0 −27.6 −21.0
Enzymes −9.1 −16.9 −20.2 −18.5
IMDB-B −23.9 −38.5 −70.1 −25.5
Collab −23.3 −28.1 −28.4 −25.3
Reddit-B −4.0 +96.9 +101.1 +125.9

inductive bias, and inducing over-smoothing.
9
Overall, only FoSR—

and, to a lesser extent, BORF—translated reduced over-squashing

into performance gains, whereas SDRF and GTR have negligible

impact and DIGL’s notable reductions fail to improve performance,

underscoring its susceptibility to over-smoothing and the disrup-

tion of the graph’s original topology and inductive bias.

Dataset Treatment Responsiveness (Q4): Table 3 presents the
dataset-level responsiveness to rewiring—defined as the ratio of av-

erage treatment effects (across methods) to the original dataset over-

squashing measurement. Negative values indicate over-squashing

mitigation, where positive values show an increase in the over-

squashing metric. Social network datasets IMDB-B and Collab are

the most responsive to rewiring. IMDB-B records the largest re-

ductions in all metrics: prevalence by −23.9%, intensity by −38.5%,
variability by −70.1%, and extremity by −25.5%. Collab follows

closely, ranking second in all metrics. In contrast, Reddit-B re-

sists mitigation the most: it ranks last across all metrics and is

the only dataset where rewiring worsens over-squashing . We hy-

pothesize that this is due to disconnected components within each

graph, where rewiring inadvertently introduces new bottlenecks.

Among the bioinformatic datasets,Mutag exhibits the most consis-

tent responsiveness. Proteins is slightly less responsive, especially

in prevalence (−13.2%) and intensity (−19.0%). Enzymes presents

the weakest responsiveness among the three, with smaller and

second-worst reductions in all four metrics: −9.1% in prevalence,

−16.9% in intensity, −20.2% in variability, and −18.5% in extremity

.Overall, these results suggest that connected social graphs with

dense community structure (Collab and IMDB-B) benefit most from

rewiring, while large, disconnected networks such as Reddit-B—and

to a lesser extent molecular graphs—pose greater challenges for

over-squashing mitigation.
10

4.3 Results on Node Classification Tasks
We report our results for Q1–Q4 of node classification.

Dataset Over-Squashing Levels (Q1): Table 4 shows that over-
squashing is generally weak across datasets and metrics. Cornell,

Texas, and Wisconsin display the highest prevalence (0.50–0.55,

large), butwith low intensity (0.006–0.009), variability (0.005–0.008),

9
Previous work has also linked DIGL to over-smoothing [11, 20].

10
See the number of connected components of each dataset in Table 1, which supports

this argument.

Table 4: Statistics of node-classification datasets. Color cod-
ing: weak/low/small , moderate , and strong/high/large .

Statistic Cornell Texas Wiscon. Cora Citeseer Chamel.

T
o
p
o
l
o
g
y #Nodes 140 135 184 2485 2120 832

#Edges 219 251 362 5096 3679 12355

Diameter 8 8 8 19 28 11

O
v
e
r
-
S
q
u
a
s
h
i
n
g Prevalence 5.47e-1 5.02e-1 5.46e-1 1.52e-2 1.84e-3 2.03e-1

Intensity 8.99e-3 6.20e-3 7.95e-3 3.63e-2 3.09e-4 1.42e-1

Variability 8.02e-3 5.72e-3 8.01e-3 2.59e-2 1.76e-3 8.37e-2

Extremity 1.14e-1 8.04e-2 1.09e-1 2.04e-1 1.84e-2 3.94e-1

and extremity (0.08–0.11), indicating widespread yet mild compres-

sion. Chameleon has the highest intensity (0.14, moderate) and

extremity (0.39, strong), but with low prevalence (20%, small), sug-

gesting severe, uneven bottlenecks over a small subset of pairs—

making it a suitable benchmark for mitigation studies. Cora and

Citeseer show the lowest prevalence (0.015 and 0.002, respectively),

along with the lowest intensity and variability, indicating minimal

over-squashing. Comparing Tables 1 and 4, graph-task datasets are

more susceptible to over-squashing than node-task datasets.

Rewiring Effectiveness (Q2): Table 5 shows in node-classification

tasks, rewiring more often increases over-squashing (red markers,

• ) than reduces it (green markers, • )—the opposite of the trend
observed in graph-classification benchmarks. FoSR generally raises

the metrics, with only a few exceptions all of which are weak

treatment effects. DIGL also increases over-squashing in five of the

six datasets; Wisconsin is the exception with the weak treatment

effects. SDRF has a near-zero impact, with changes mostly on the

order of 10
−6

to 10
−2
). These negligible effects have improved

over-squashing just for Wisconsin and Chameleon. BORF exhibits

mixed behavior, improving over-squashing for some metrics in

some datasets while worsening others.

By treatment-effect ranking, DIGL performs the worst in most

datasets/metrics—except inWisconsin, where it ranks best across all

metrics. BORF ranks best for intensity, variability, and extremity in

Citeseer, Texas, and Chameleon, while FoSR is best for these metrics

in Cora and Cornell. In Wisconsin, FoSR is the worst overall metric.

Aggregating effects across datasets (AVG ITE in Table 5), DIGL

has the strongest adverse effects (prevalence +0.15, intensity +0.1,

variability +0.09, and extremity +1.1 on average), being worst in

all metrics except variability. SDRF has a near-negligible impact: it

slightly increases all four metrics (worsens over-squashing), yet its

increments in intensity, variability, and extremity are the smallest

among the other methods, making it the “least harmful” of the

rewiring options. BORF shows a mixed pattern: it slightly lowers

prevalence (-0.011, the best among all methods) but sharply in-

creases extremity (+0.37) and variability (+0.11, the worst), indicat-

ing reduced global compression at the cost of new local bottlenecks.

Overall, as node-classification benchmarks are structurally less

prone to over-squashing (Table 4), aggressive (e.g., DIGL) or even

moderate (e.g, SDRF and BORF) rewiring is often ineffective or

counterproductive. While added connectivity relieves bottlenecks

in graph-classification benchmarks with high over-squashing, it
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Table 5: Treatment effects (ITEs) for node classification, averaged over each GNN baseline’s hyperparameter configuration.
For each dataset–metric combination, the background highlights the best and worst rewiring method. Desirable negative
ITEs are marked with • , and undesirable positive ITEs with • . Gain is the percentage change in classification accuracy after
rewiring. † marks not statistically significant results. “Avg ITE” summarizes each method’s average effect across all datasets.

Rew. Dataset Individual Treatment Effect Gain (%)

Prevalence Intensity Variability Extremity

FoSR

Cora 6.0e-4 ± 2.2e-2 • −1.0e-2 ± 3.7e-2 • −4.5e-3 ± 2.8e-2 • −6.1e-2 ± 1.9e-1 • −0.9 ± 0.1

Citeseer −8.1e-5 ± 3.0e-5 • 9.4e-4 ± 4.9e-4 • 3.2e-3 ± 1.2e-3 • 2.0e-2 ± 4.5e-3 • 1.2 ± 1.7

Texas 7.5e-2 ± 5.0e-2 • 1.6e-2 ± 1.3e-3 • 1.2e-2 ± 9.9e-4 • 9.1e-2 ± 5.1e-2 • −2.3 ± 5.9

Cornell 4.5e-2 ± 6.3e-2†• 2.3e-2 ± 4.4e-3 • 1.9e-2 ± 9.7e-2 • 1.4e-1 ± 9.4e-2 • −1.1 ± 0.3

Wiscon. 4.4e-2 ± 5.1e-2 • 1.3e-2 ± 1.9e-2 • 1.1e-2 ± 1.7e-2 • 1.4e-1 ± 1.7e-1 • 1.9 ± 2.6

Chamel. 1.8e-1 ± 1.0e-2 • 8.5e-3 ± 3.8e-3 • 2.8e-2 ± 3.5e-4 • 1.1e-1 ± 1.6e-2 • −0.9 ± 1.2

Avg ITE 5.7e-2 ± 6.6e-2 • 8.6e-3 ± 1.1e-2 • 1.1e-2 ± 1.1e-2 • 7.3e-2 ± 7.9e-2 • −0.4 ± 1.4

DIGL

Cora 6.4e-1 ± 0.0e0 • 2.0e-1 ± 0.0e0 • 1.6e-1 ± 0.0e0 • 2.2e0 ± 0.0e0 • 1.3 ± 0.0

Citeseer 1.8e-1 ± 0.0e0 • 1.4e-1 ± 0.0e0 • 1.5e-2 ± 0.0e0 • 1.3e0 ± 0.0e0 • 1.0 ± 0.0

Texas 3.3e-2 ± 0.0e0 • 2.4e-2 ± 0.0e0 • 3.8e-2 ± 0.0e0 • 3.0e-1 ± 0.0e0 • −0.8 ± 0.0

Cornell −3.0e-2 ± 0.0e0 • 2.0e-1 ± 0.0e0 • 2.1e-1 ± 0.0e0 • 1.7e0 ± 0.0e0 • 5.0 ± 0.0

Wiscon. −4.0e-1 ± 0.0e0 • −7.4e-3 ± 0.0e0 • −7.4e-3 ± 0.0e0 • −1.0e-1 ± 0.0e0 • −2.4 ± 0.0

Chamel. 4.6e-1 ± 0.0e0 • 5.2e-2 ± 0.0e0 • 1.1e-1 ± 0.0e0 • 1.1e0 ± 0.0e0 • −0.7 ± 0.0

Avg ITE 1.5e-1 ± 3.7e-1 • 1.0e-1 ± 9.1e-2 • 8.8e-2 ± 8.6e-2 • 1.1e0 ± 7.8e-1 • 0.6 ± 2.3

SDRF

Cora 5.5e-6 ± 0.0e0 • 5.3e-5 ± 0.0e0 • 3.2e-6 ± 0.0e0 • 1.9e-5 ± 0.0e0 • 0.3 ± 0.9

Citeseer
*

N/A N/A N/A N/A N/A

Texas 1.2e-1 ± 0.0e0 • 2.2e-3 ± 0.0e0 • 5.3e-3 ± 0.0e0 • 8.7e-2 ± 0.0e0 • −1.8 ± 2.1

Cornell
*

N/A N/A N/A N/A N/A

Wiscon. −5.2e-2 ± 1.2e-1 • −1.2e-3 ± 2.9e-3 • −5.1e-4 ± 2.2e-3 • 6.8e-3 ± 4.0e-2 • 0.4 ± 0.4

Chamel. −2.7e-4 ± 1.2e-5 • −2.0e-4 ± 9.7e-5 • −1.9e-4 ± 1.6e-4 • 5.8e-4 ± 9.4e-5 • 0.2 ± 0.1

Avg ITE 1.7e-2 ± 6.3e-2 • 2.1e-4 ± 1.2e-3 • 1.1e-3 ± 2.8e-3 • 2.4e-2 ± 3.7e-2 • −0.2 ± 0.9

BORF

Cora −6.8e-5 ± 1.4e-6 • −8.0e-4 ± 1.0e-4 • 1.7e-4 ± 2.7e-5 • 1.2e-2 ± 2.1e-4 • 2.3 ± 2.1

Citeseer 2.0e-6 ± 9.9e-7†• −3.3e-6 ± 2.3e-6†• −9.2e-6 ± 6.4e-6 • 0.0e0 ± 0.0e0 • 2.7 ± 1.6

Texas 3.7e-2 ± 6.8e-2 • 7.6e-4 ± 8.7e-4 • 8.4e-4 ± 1.5e-3 • 2.6e-2 ± 4.7e-2 • 7.4 ± 3.1

Cornell −6.0e-2 ± 2.7e-2 • 6.8e-2 ± 1.5e-2 • 6.9e-1 ± 3.9e-1 • 2.3e0 ± 7.8e-2 • 10.7 ± 2.0

Wiscon. −3.1e-2 ± 1.1e-2 • 3.3e-4 ± 1.0e-4 • −9.5e-4 ± 5.4e-4 • −9.9e-3 ± 2.9e-3 • 6.1 ± 0.5

Chamel. −8.2e-3 ± 1.4e-5 • −3.3e-2 ± 5.7e-4 • −2.1e-2 ± 2.8e-4 • −9.9e-2 ± 1.5e-3 • 4.8 ± 3.5

Avg ITE −1.1e-2 ± 3.4e-2 • 5.8e-3 ± 3.0e-2 • 1.1e-1 ± 2.8e-1 • 3.7e-1 ± 8.6e-1 • 5.7 ± 2.9

*
No edges are added by SDRF on Citeseer and Cornell; consequently, no treatment effect can be computed (entries marked “N/A”). The performance change reported in the SDRF

paper stems from a different hyperparameter set rather than the rewiring itself.

often disrupts local structure in node-classification benchmarks

with low over-squashing, creating new compression pathways.

Rewiring vs. Performance (Q3): Figure 1b shows the correlation
coefficient 𝜌 between each rewiring method’s treatment effect and

its performance changes. DIGL shows strong, significant positive

correlations for threemetrics (𝜌 ≥ 0.83), suggesting its performance

gains coincide with increased over-squashing. SDRF shows mod-

erate, non-significant negative correlations (𝜌 = −0.37); while in
the “right” direction, effects are too small to yield meaningful gains.

FoSR exhibits weak, non-significant negative correlations for most

metrics, indicating little potential performance gain. BORF mostly

shows non-significant positive correlations, implying its mitigation

may drop the performance. Overall, in node-classification bench-

marks, rewiring rarely improves performance by reducing over-

squashing. On the contrary, performance gains—particularly in

DIGL—often coincide with increased compression, suggesting that

other mechanisms (e.g., altered propagation patterns or smoothing

behavior) drive the improvements.

Dataset Treatment Responsiveness (Q4): Table 6 shows that no
dataset exhibit “true” responsiveness to over-squashing mitigation.

All values (except one) are positive, indicating that rewiring meth-

ods fail to reduce over-squashing and often worsen it. Citeseer is

the most extreme case,suggests followed by Cornell. These results

suggest that rewiring often introduces new bottlenecks in node

classification tasks, rather than relieving them.

4.4 Discussion: Graph vs. Node Classification
DatasetOver-Squashing Levels (Q1): Graph-classification datasets
exhibit substantially higher levels of over-squashing than node-

classification ones (compare Tables 1 and 4). Hence, over-squashing
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Table 6: Responsiveness Node datasets to rewiring (percent-
ages). Negatives are desirable mitigation (metric decreases),
whereas positives indicate increases. Text color denote most,
second-most, second-worst, and worst responsiveness.

Dataset Prevalence Intensity Variability Extremity

Cornell 2.7 1079.0 3865.3 1228.1

Texas 13.1 177.4 244.8 161.7

Wisconsin −20.1 15.1 6.6 8.4

Cora 1052.6 129.5 150.6 264.7

Citeseer 3260.9 15210.4 346.6 2391.3

Chameleon 78.8 4.8 34.6 71.1

is a core obstacle in graph classification datasets, but a more negli-

gible issue in node datasets—implying that mitigation efforts may

be more impactful for the former.

Rewiring Effectiveness (Q2): Rewiring mitigates over-squashing

in graph benchmarks, but is often harmful in node datasets. In graph

datasets, added connectivity—especially via DIGL’s dense rewiring—

consistently reduces over-squashing metrics. In node datasets, the

same interventions frequently worsen over-squashing, as already

balanced or mildly compressed structures (i.e., graphs with mini-

mal over-squashing) are disrupted, and new bottlenecks emerge.

This suggests that rewiring is beneficial only when over-squashing

is severe or moderate (e.g., graph datasets) and can be counter-

productive when over-squashing is low (most node datasets).

Rewiring vs. Performance (Q3): In graph-level benchmarks,

FoSR and BORF show negative correlations between reduced over-

squashing and improved accuracy, confirming that alleviating in-

formation bottlenecks enhances generalization. DIGL, despite large

reductions, fails to improve performance—likely due to aggres-

sive edge additions erasing topological information. In node-level

tasks, DIGL and BORF often improve performance while surpris-

ingly increasing over-squashing, suggesting that other factors (e.g.,

smoothing or altered message propagation) drive the gains. SDRF

and FoSR show no correlations. Overall, rewiring mitigation helps

performance when over-squashing is pronounced (as in most graph

datasets) and not overcorrecting (as in FoSR or BORF). By contrast,

when over-squashing is mild—as in typical node datasets—rewiring

rarely converts metric improvements into accuracy gains.

Dataset Responsiveness (Q4): Dataset responsiveness to rewiring
is pronounced in graph classification datasets but not in node classi-

fication datasets. In graph datasets, well-connected social networks

(i.e., Collab and IMDB-B) show the strongest responsiveness, and

bioinformatic graphs are moderately responsive. In node datasets,

rewiring rarely helps and often hurts. These findings suggest that

rewiring pays off only when over-squashing is severe and global,

but has limited or negative impact when compression is mild, un-

derscoring the need for dataset-aware interventions.

5 Conclusion and Future Work
We proposed topology-focused measurements for over-squashing,

built on its formal characterization by modeling the exponential

decay of node-pair sensitivity with increasing network depth. We

extend our measurements to the graph-level measures and integrate

them into a causal inference framework to evaluate the effect of

rewiring on over-squashing. Our extensive empirical analyses show

that graph-classification datasets (except Reddit-B) suffer substan-

tial over-squashing and are generally responsive: rewiring lowers

our metrics and often boosts accuracy. Node-classification bench-

marks show little over-squashing; rewiring often increases com-

pression, and its performance effects are largely unrelated to over-

squashing. Our findings underscore the importance of applying

rewiring selectively, based on the presence of over-squashing. Fu-

ture work includes extending our experiments to dynamic rewiring

methods, exploring the relationship between negative decay rates

and over-smoothing, and designing novel rewiring methods guided

by our over-squashing measurement framework.

A Normalized Jacobian Norm Approximation
Proof. We derive an approximation of the relative Jacobian

norm
˜Jℓ (𝑣,𝑢) under the assumption of a linear message-passing

GNN. Let the ℓ-th layer of a linear message-passing GNN be

H(ℓ ) = ÃH(ℓ−1)Wℓ
(9)

where Ã = A + I is the self-loop–augmented adjacency matrix,

H(ℓ−1)
stacks node embeddings of the layer ℓ − 1 as rows, and Wℓ

is the learnable weight matrix of the ℓ-th layer. Iterating from the

initial features H0
gives

H(ℓ ) = ÃℓH(0)W, W := W(1)W(2) . . .W(ℓ ) . (10)

For any node 𝑣 , its representation after ℓ layers is:

h(ℓ )𝑣 =

𝑛∑︁
𝑢=1

(Ãℓ )𝑢𝑣h(0)𝑢 W, (11)

where h(0)𝑢 is the input feature row of node 𝑢. The Jacobian of h(ℓ )𝑣

with respect to h(0)𝑢 is then

𝜕h(ℓ )𝑣

𝜕h(0)𝑢

= (Ãℓ )𝑢𝑣W ∈ R𝑑0×𝑑ℓ , (12)

Given that the matrix norms are homogeneous—for any scaler 𝑐 ,

∥𝑐 W∥ = |𝑐 |∥W∥—we compute the Frobenius norm




 𝜕h(ℓ )𝑣

𝜕h(0)𝑢






 = ∥(Ãℓ )𝑢𝑣W∥ = (Ãℓ )𝑢𝑣 ∥W∥. (13)

To compute the relative Jacobian norm, we normalize by the

total sensitivity of 𝑣 to all input nodes:∑︁
𝑘







 𝜕h(ℓ )𝑣

𝜕h(0)
𝑘







 = ∥W∥
∑︁
𝑘

(Ãℓ )𝑘𝑣 . (14)

Canceling the common factor ∥W∥, the relative Jacobian norm

simplifies to the exact expression:

˜Jℓ (𝑣,𝑢) =
(Ãℓ )𝑢𝑣∑
𝑘 (Ãℓ )𝑘𝑣

. (15)

□
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