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ABSTRACT
Link prediction is a fundamental problem for graph-structured data

(e.g., social networks, drug side-effect networks, etc.). Graph neural

networks have offered robust solutions for this problem, specifically

by learning the representation of the subgraph enclosing the target

link (i.e., pair of nodes). However, these solutions do not scale well

to large graphs as extraction and operation on enclosing subgraphs

are computationally expensive. This paper presents a scalable link

prediction solution, that we call ScaLed, which utilizes sparse en-

closing subgraphs to make predictions. To extract sparse enclosing

subgraphs, ScaLed takes multiple random walks from a target pair

of nodes, then operates on the sampled enclosing subgraph induced

by all visited nodes. By leveraging the smaller sampled enclosing

subgraph, ScaLed can scale to larger graphs with much less over-

head while maintaining high accuracy. Through comprehensive

experiments, we have shown that ScaLed can produce comparable

accuracy to those reported by the existing subgraph representation

learning frameworks while being less computationally demanding.
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1 INTRODUCTION
Graph-structured data such as user interactions, collaborations,

protein-protein interactions, drug-drug interactions are prevalent in

natural and social sciences. Link prediction—a fundamental problem

on graph-structured data—intends to quantify the likelihood of a

link (or interaction) occurring between a pair of nodes (e.g., proteins,
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drugs, etc.). Link prediction has many diverse applications such as

predicting drug side effects, drug-repurposing [11], understanding

molecule interactions [16], and recommender systems [7, 38].

Many solutions to link prediction problem [22, 24–26, 34] has

been proposed ranging from simple heuristics (e.g., common neigh-

bors, Adamic-Adar [1], Katz [17]) to graph neural networks (GNNs)
[5, 6, 14, 19, 28, 31, 43]. Among these solutions, GNNs [12, 35, 46]

have emerged as the promising solution for learning rich latent rep-

resentations of graph data to tackle link prediction. The early GNNs

focused on shallow encoders [10, 30] in which the latent nodes’ rep-

resentations were first learnt through a sequence of random walks,

and then a likelihood of a link is determined by combining its two-

end nodes’ latent representations. However, these shallow encoders

were limited by not incorporating nodal features and incompati-

bility with inductive settings. These two challenges were (partially)

addressed with message-passing graph neural networks [13, 20, 36].
These advancements motivate the research on determining and

extending the expressive power of GNNs [3, 9, 39–41, 44] for all

downstream tasks of link prediction, node classification, and graph

classification. For link prediction, subgraph-based representation

learning (SGRL) methods [5, 6, 23, 28, 43]—by learning the enclos-

ing subgraphs around the two-end nodes rather than independently

learning two end-node’s embedding—have improved GNNs’ expres-

sive power, and offered state-of-the-art solutions. However, these

solutions suffer from the lack of scalability to large-scale graphs.

This is primarily due to the computation overhead in extracting,

preprocessing, and learning (large) enclosing subgraphs.

We introduce Sampling Enclosing Subgraphs for Link Prediction
(ScaLed) to extend SGRL methods and enhance their scalability.

ScaLed samples enclosing subgraphs using a sequence of random

walks. This sampling reduces the computational overhead of large

subgraphswhilemaintaining the key structural information. 𝑆𝑐𝑎𝐿𝑒𝑑

can be integrated into any GNN, and also offers parallelizability

and model compression that can be exploited for large-scale graphs.

The two hyperparameters, walk length and number of walks, in

ScaLed provide a way to control the trade-off between scalability

and accuracy, if needed. Our extensive experiments on real-world

datasets demonstrate that ScaLed produces comparable results to

the state-of-the-art methods (e.g, SEAL [43]) in link prediction, but

requiring magnitudes less training data, time, and memory.

2 LINK PREDICTION
We consider an undirected graph 𝐺 = (𝑉 , 𝐸,A) where 𝑉 = [𝑛]
is the set of 𝑛 nodes (e.g., individuals, proteins, etc), 𝐸 ⊆ 𝑉 × 𝑉

represents the edge set (e.g., friendship relations or protein-to-

protein interactions) and the tensor A ∈ R𝑛×𝑛×𝑑 contains all nodes’

attributes (e.g., user profiles) and edges’ attributes (e.g, the strength

or type of interactions). For each node 𝑣 ∈ 𝑉 , its attributes (if any)

are stored in the diagonal component A𝑣𝑣. while the off-diagonal

https://doi.org/10.1145/3511808.3557688
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component A𝑢𝑣. can have the attributes of an edge (𝑢, 𝑣) if (𝑢, 𝑣) ∈
𝐸; otherwise A𝑢𝑣. = 0.
Link Prediction Problem. Our goal in link prediction is to infer

the presence or absence of an edge between a pair of target nodes
given the observed tensor A. The learning problem is to find a

likelihood (or scoring) function 𝑓 such that it assigns interaction
likelihood (score) 𝐴𝑢𝑣 to each target pair of nodes (𝑢, 𝑣) ∉ 𝐸, whose

relationships to each other are not observed. Larger𝐴𝑢𝑣 indicates a

higher chance of (𝑢, 𝑣) forming a link ormissing a link. The function

𝑓 can be formulated as𝐴𝑢𝑣 = 𝑓 (𝑢, 𝑣,A|𝜽 ) with 𝜽 denoting themodel

parameters. Most link prediction methods differ from each other in

the formulation of the likelihood function 𝑓 and its assumptions.

The function 𝑓 can be some parameter-free predefined heuristics

[1, 17, 27] or learned by a graph neural network [13, 20, 32, 36] or

any other deep learning framework [37]. The likelihood function

formulation also varies based on its computation requirement on the

maximum hop of neighbors of target nodes. For example, first-order
heuristics (e.g., common neighbors and preferential attachment [2])

only require the direct neighbors while graph neural networks

methods [13, 19] and high-order heuristics (e.g., Katz [17], rooted

PageRank [4]) require knowledge of the entire graph.

3 THE ScaLed MODEL
After describing the SEAL link prediction model and its variants,

we detail how our proposed ScaLed model extends these models to

maintain their prediction power but offer better scalability.

SEAL and its variants. Rather than learning the target nodes’

embeddings independently (as with Graph Convolutional Network

[20] or GraphSAGE [13]), SEAL [43] focuses on learning the en-
closing subgraph of a pair of target nodes to capture their relative

positions to each other in the graph:

Definition 1 (Enclosing Subgraph [43]). Given a graph𝐺 , the
ℎ-hop enclosing subgraph around target nodes (u,v) is the subgraph
𝐺ℎ
𝑢𝑣 induced from𝐺 with the set of nodes { 𝑗 ∥𝑑 ( 𝑗, 𝑥) ≤ ℎ 𝑜𝑟 𝑑 ( 𝑗, 𝑦) ≤

ℎ}, where 𝑑 (𝑖, 𝑗) is the geodesic distance between node 𝑖 and 𝑗 .

In SEAL, for each pair of the target nodes (𝑢, 𝑣), their enclosing
subgraph𝐺ℎ

𝑢𝑣 is found with two ℎ-hop Breadth-First Search (BFS),

where each BFS starts from 𝑢 and 𝑣 . The nodes in the enclosing

subgraph are also augmented with labels indicating their distances

to the target pair of nodes using the Double-Radius Node Labeling
(DRNL) hash function [43]:

𝐷𝑅𝑁𝐿(𝑥,𝐺ℎ
𝑢𝑣) = 1 +𝑚𝑖𝑛 (𝑑𝑥𝑢 , 𝑑𝑥𝑣) + ⌊𝑑 ′/2⌋ ⌈𝑑 ′/2 − 1⌉, (1)

where 𝑥 represents the nodes in the subgraph 𝐺ℎ
𝑢𝑣 , 𝑑𝑥𝑢 is the ge-

odesic distance of 𝑥 to 𝑢 in 𝐺ℎ
𝑢𝑣 when node 𝑣 is removed, and

𝑑 ′ = 𝑑𝑥𝑢 + 𝑑𝑥𝑣 . Note that the distance of 𝑥 to each target node 𝑢 is

calculated in isolation by removing the other target node 𝑣 from

the subgraph. The target nodes are given the label 1 and a node

with∞ distance to at least one of the target nodes is given the label

0. Each node label is then represented by its one-hot encoding, and

expands the initial node features, if any. The subgraph𝐺ℎ
𝑢𝑣 along

with the augmented nodal features is fed into a graph neural net-

work, which predicts the presence or absence of the edge. In SEAL,

the link prediction is treated as a binary classification over the en-

closing subgraphs by determining if the enclosing subgraph will be

closed by a link between the pair of target nodes or not. Thus, SEAL
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(b) Induced subgraph with labels.

Figure 1: The ScaLedmodel: (a) the randomwalks from target
nodes 𝑢 (blue arrows) and 𝑣 (purple arrows) ; and (b) the
induced sampled enclosing subgraph with DRNL labels.
uses a graph pooling mechanism (e.g., SortPooling [44]) to compute

the enclosing subgraph representation for the classification task.

Other variants of SEAL (e.g., DE-GNN [23] andWalkPool [28]) have

replaced either its DRNL labeling method [23] or graph aggregation

method [28] with other alternatives to improve its expressiveness

power. However, SEAL and these variants suffer from the scalability

issue as the subgraph size grows exponentially with the hop size

ℎ, and large-degree nodes (e.g., celebrities) possess large enclosing

subgraphs even for a small ℎ. To address these scalablity issues, we

propose Sampling Enclosing Subgraphs for Link Prediction (ScaLed).

ScaLed. Observing that the computational bottleneck of SEAL and

its variants originates from the exponential growth and the size

of enclosing subgraphs, we propose Sampled Enclosing Subgraphs
with more tractable sizes:

Definition 2 (Random Walk Sampled Enclosing Subgraph).

Given a graph𝐺 , the random-walk sampledℎ-hop enclosing subgraph
around target nodes (u,v) is the subgraph 𝐺ℎ,𝑘

𝑢𝑣 induced from 𝐺 with
the set of nodes 𝑉ℎ,𝑘

𝑢𝑣 ∈𝑊 ℎ,𝑘
𝑢 ∪𝑊

ℎ,𝑘
𝑣 , where𝑊 ℎ,𝑘

𝑖
is the set of nodes

visited by 𝑘 many h-length random-walk(s) from node 𝑖 .
Figure 1(b) illustrates sampled enclosing subgraph of the target

pair of (𝑢, 𝑣) for the original graph in Figure 1(a), where ℎ = 2 and

𝑘 = 2. Here,𝑊
ℎ,𝑘
𝑣 = {𝑣, 𝑑, 𝑒, 𝑓 , 𝑔} and𝑊 ℎ,𝑘

𝑢 = {𝑢, 𝑎, 𝑏, 𝑐}, resulting
in 𝑉

ℎ,𝑘
𝑢𝑣 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔,𝑢, 𝑣}. The included subgraph in Figure

1(b) contains all nodes and edges between nodes in 𝑉
ℎ,𝑘
𝑢𝑣 .

Comparing Definitions 1 and 2, a few important observations can

be made: (i) the sampled enclosing subgraph𝐺
ℎ,𝑘
𝑢𝑣 is the subgraph of

the enclosing subgraph 𝐺ℎ
𝑢𝑣 , as the ℎ-length random walks can not

reach a node further thanℎ-hop away from the starting node; (ii) the

size of the sampled subgraph is bounded to 𝑂 (ℎ𝑘) and controlled

by these two parameters compared to the exponential growth of

enclosing subgraphs with ℎ in Definition 1. These two observations

highlight that ScaLed, by replacing the dense enclosing subgraphs

with their sparse (sub)subgraphs, offers scalability. ScaLed also

offers flexibility to control the extent of sparsity and scalability

with its sampling parameters ℎ and 𝑘 .

The ScaLed model can use any labeling trick (e.g., DRNL, zero-

one labeling, etc.) [45] to encode the distances between target nodes

and other nodes in the sampled subgraphs; see Figure 1(b) for an

example. Similar to SEAL, the one-hot encoding of the distance

labels along with the nodal features (if any) of the nodes in the

sampled subgraph are fed into a graph neural network with graph
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Dataset # Nodes # Edges Avg. Deg. # Features
USAir 332 2126 12.81 NA

Celegans 297 2148 14.46 NA

NS 1461 2742 3.75 NA

Router 5022 6258 2.49 NA

Power 4941 6594 2.67 NA

Yeast 2375 11693 9.85 NA

Ecoli 1805 14660 16.24 NA

PB 1222 16714 27.36 NA

Cora 2708 5429 4 1433

CiteSeer 3327 4732 2.84 3703

Table 1: The statistics of experimented datasets.
pooling operation (e.g., DGCNN with SortPooling operation [44])

for the classification task. The ScaLed model offers easy plug-and-

play modularity into most graph neural networks (e.g., GCN [20],

GIN [36], GraphSAGE [13], DGCNN [44], etc.), and can also be used

alongside any regularization technique or loss function.

Although random walks have been used in unsupervised latent

learning of graph data [10, 30], ScaLed leverages them differently

to sparsify the enclosing subgraphs and enhance scalability. Our

random-walk subgraph sampling technique can be incorporated

into any other SGRL task to improve scalability. This technique

does not incur much computational overhead, can be viewed as

a preprocessing step, and can benefit from parallelizability. The

random-walk sampled subgraphs have controllable size and do not

grow exponentially with ℎ. Our random-walk subgraph sampling

is analogous to sampling a subgraph based on the “importance” of

nodes in the neighborhood of target nodes, with importance being

measured by rooted PageRank [4] starting from the target nodes.

We leave further theoretical analysis as future work.

4 EXPERIMENTS
We run extensive experiments to compare the prediction accuracy

and computational efficiency of ScaLed against the set state-of-the-

art link prediction methods. We further analyze its hyperparameter

sensitivity and how effective it is in improving subgraph sparsity.
1

Datasets. We consider a set of homogeneous, undirected graph

datasets (see Table 1), which have been commonly subject to many

other link prediction studies [5, 6, 14, 23, 28, 33, 42, 43] and are

publicly available. Our datasets are categorized into non-attributed
and attributed datasets where nodal features are absent or present

in the dataset, respectively. The edges in each dataset are randomly

split into 85% training, 5% validation, and 10% testing datasets. Each

dataset split is also augmented with random negative samples (i.e,

absent links) with a 1:1 ratio for positive and negative samples.

Baselines.We compare our ScaLed against a comprehensive set of

baselines in four categories: heuristic, graph autoencoder (GAE),

latent feature-based (LFB), and SGRL methods. For heuristic meth-

ods, we use common neighbors (CN), Adamic Adar (AA) [1], and

Personalized PageRank (PPR). GAE baselines include GCN [20],

GraphSAGE [13], and GIN [36] encoders with a hadamard product

of a pair of nodes’ embedding as the decoder. The LFB methods con-

sists of matrix factorization [21] and node2vec [10] with a logistic

classifier. Our SGRL baseline is state-of-the-art SEAL [43].

Setup. GAE baselines have 3 hidden layers with dimensionality

of 32. The nodal initial features, for non-attributed datasets, are

1
Our code is implemented in PyTorch Geometric [8] and PyTorch [29]. The link to

GitHub repository is https://github.com/venomouscyanide/ScaLed. All our experi-

ments are run on servers with 50 CPU cores, 377 GB RAM and GTX 1080 Ti GPUs.

set to one-hot indicators. In MF, the nodal latent feature has 32

dimensions for each node. MF uses a 3-layered MLP with 32 hidden

dimensions. For node2vec, we set sampling parameters 𝑝 = 𝑞 = 1

and a dimensionality of 32 for the node features. For SEAL, we set

ℎ = 2 for non-attributed datasets and ℎ = 3 for attributed datasets.

We also use a 3-layered DGCNN with a hidden dimensionality of

32 for all datasets. For ScaLed model, we set 𝑘 = 20 while ℎ and

all other hyperparameters are set the same as that of SEAL for fair

comparison. The learning rate is set to 0.0001 for SEAL and ScaLed

and 0.01 for node2vec, MF and GAE baselines. All learning models,

for both attributed and non-attributed datasets, are trained for 50

epochs with a dropout of 0.5 (except for node2vec without dropout)

and Adam [18] optimizer (except for node2vec with Sparse Adam).

GAE baselines are trained by full-batch gradients; but others are

trained with a batch size of 32.

Measurements.We report the mean of area under the curve (AUC)

of the testing data over 5 runs with 5 random seeds. For each model

in each run, we test it against testing data with those parameters

which achieve highest AUC on validation data. For computational

measurements, we also report average training plus inference time,

allocated CUDA memory, model size, and number of parameters.
2

Results: AUC. Table 2 reports the average AUC over five runs for

all datasets and models. In all attributed and non-attributed datasets,

ScaLed is ranked first or second among all baselines. Also, ScaLed

gives very comparable results to SEAL or even outperforms SEAL

in some datasets (e.g., NS and Yeast). This performance has also

been achieved by order of magnitudes less resource consumption.

Results: Resource Consumption. Table 3 reports the average
consumption of resources over five runs for ScaLed and SEAL. For

all datasets, the average runtime of ScaLed is much lower for larger

datasets (e.g., Ecoli and PB), but slightly lower for small datasets

(USAir and Celegans). For Ecoli and PB, ScaLed gains speed up of

1.90× and 1.69× over SEAL, while using upto 20× less allocated

GPU memory, model size and parameters. The sampled subgraphs

in ScaLed are sparser than that of SEAL (compare the number of

nodes and edges in Table 3). ScaLed requires 7.86× and 5.17× less

edges for Cora and CiteSeer, respectively. This compression can be

upto 32.18× (see PB). The results in Tables 2 and Tables 3 confirm

our hypothesis that ScaLed is able to match the performance of

SEALwithmuch less computational overhead.We evenwitness that

ScaLed has outperformed SEAL for NS and Yeast while consuming

1.51× and 6.35× less edges in the sampled enclosing subgraphs.

These results suggest that random walk based subgraph sampling

is beneficial for the learning without compromising the accuracy.

Random-walk sampling enables inclusion of both local and global

neighborhoods around target nodes while keeping a low memory

profile. Finally, the results on larger and denser datasets such as

Ecoli and PB indicates that the largest computational efficiency

gains are achieved by ScaLed on larger and denser datasets.

Results: Hyperparameter Sensitivity Analyses.We intend to

understand how the walk length ℎ and the number of walks 𝑘

control the computational overhead in ScaLed. Thus, we conduct a

sensitivity analysis of these two parameters on two of the largest

and densest non-attributed datasets (i.e., Ecoli and PB) and on both

of the attributed datasets (i.e., Cora and CiteSeer). We vary ℎ and

2
Profiling adds additional compute overhead which exaggerates the actual runtimes.

https://github.com/venomouscyanide/ScaLed
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Model USAir Celegans NS Router Power Yeast Ecoli PB CiteSeer Cora

CN 93.02 ± 1.16 83.46 ± 1.22 91.81 ± 0.78 55.48 ± 0.61 58.10 ± 0.53 88.75 ± 0.70 92.76 ± 0.70 91.35 ± 0.47 65.90 ± 0.99 71.47 ± 0.70

AA 94.34 ± 1.31 85.26 ± 1.14 91.83 ± 0.75 55.49 ± 0.61 58.10 ± 0.54 88.81 ± 0.68 94.61 ± 0.52 91.68 ± 0.45 65.91 ± 0.98 71.54 ± 0.72

PPR 88.61 ± 2.01 85.24 ± 0.64 91.95 ± 1.11 39.88 ± 0.51 63.09 ± 1.90 91.65 ± 0.74 89.77 ± 0.48 86.93 ± 0.54 73.85 ± 1.39 82.58 ± 1.13

GCN 88.03 ± 2.84 81.58 ± 1.42 91.48 ± 1.28 83.99 ± 0.64 67.51 ± 1.21 90.80 ± 0.95 90.82 ± 0.56 90.92 ± 0.72 86.66 ± 1.02 89.36 ± 0.99

SAGE 85.64 ± 1.60 74.68 ± 4.46 91.02 ± 2.58 67.33 ± 10.49 65.77 ± 1.06 88.08 ± 1.63 87.12 ± 1.14 86.75 ± 1.83 84.13 ± 1.07 85.86 ± 1.27

GIN 88.93 ± 2.04 73.60 ± 3.17 82.16 ± 2.70 75.74 ± 3.31 57.93 ± 1.28 83.51 ± 0.67 89.34 ± 1.45 90.35 ± 0.78 71.73 ± 4.11 71.77 ± 2.74

MF 89.99 ± 1.74 75.81 ± 2.73 77.66 ± 3.02 69.92 ± 3.26 51.30 ± 2.25 86.88 ± 1.37 91.07 ± 0.39 91.74 ± 0.22 61.24 ± 3.96 60.68 ± 1.30

n2v 86.27 ± 1.39 74.86 ± 1.38 90.69 ± 1.20 63.30 ± 0.53 72.58 ± 0.71 90.91 ± 0.58 91.02 ± 0.17 84.84 ± 0.73 74.86 ± 1.11 78.79 ± 0.75

SEAL 97.39 ± 0.72 90.71 ± 1.39 98.65 ± 0.57 95.70 ± 0.17 84.73 ± 1.14 97.48 ± 0.25 97.88 ± 0.20 95.08 ± 0.39 88.50 ± 1.15 90.66 ± 0.81

ScaLed 96.44 ± 0.93 88.27 ± 1.17 98.88 ± 0.50 94.20 ± 0.50 83.99 ± 0.84 97.68 ± 0.17 97.31 ± 0.14 94.53 ± 0.57 87.69 ± 1.67 90.55 ± 1.18

Table 2: Average AUCs for all datasets and models. The best and second best are shaded in dark and light gray respectively.
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Figure 2: Impact of of walk length ℎ and number of walks 𝑘 on AUC and runtime for PB (a-b) and Cora (c-d) datasets.

Dataset Model Time CUDA Size Params. # Nodes # Edges

USAir

SEAL 486 52 MB 2.04 MB 0.533M 207 2910

ScaLed 446 11 MB 0.44 MB 0.113M 40 518

Celegans

SEAL 473 47 MB 1.84 MB 0.480M 206 2482

ScaLed 453 7 MB 0.45 MB 0.117M 45 293

NS

SEAL 580 5 MB 0.22 MB 0.056M 17 83

ScaLed 572 3 MB 0.19 MB 0.048M 12 55

Router

SEAL 1330 38 MB 0.55 MB 0.144M 82 253

ScaLed 1342 5 MB 0.27 MB 0.683M 21 54

Power

SEAL 1394 4 MB 0.22 MB 0.056M 16 33

ScaLed 1404 3 MB 0.20 MB 0.052M 13 25

Yeast

SEAL 2605 65 MB 1.38 MB 0.362M 151 2438

ScaLed 2482 13 MB 0.39 MB 0.101M 35 384

Ecoli

SEAL 6044 331 MB 10.22 MB 2.68M 1166 21075

ScaLed 3181 20 MB 0.50 MB 0.130M 46 790

PB

SEAL 6167 312 MB 6.41 MB 1.68M 729 20981
ScaLed 3649 15 MB 0.57 MB 0.149M 57 652

CiteSeer

SEAL 1491 221 MB 0.97 MB 0.253M 82 326

ScaLed 1044 49 MB 0.72 MB 0.187M 22 63

Cora

SEAL 1731 195 MB 1.78 MB 0.466M 202 692

ScaLed 1199 27 MB 0.53 MB 0.140M 32 88

Maximum Ratio 1.90 20.80 20.44 MB 20.61 25.34 32.18

Table 3: Avg. computational consumption of SEAL vs. ScaLed
over five runs: runtime in seconds, max allocated CUDA and
model size in Megabytes (MB), number of parameters in Mil-
lions. Maximum ratio corresponds to the maximum of ratio
of SEAL’s resource over ScaLed resource (in bold).

𝑘 while keeping other hyperparameters fixed. Figure 2 reports the

average AUC and runtime for PB and Cora dataset over 5 runs. The

results for Ecoli and CiteSeer were qualitatively similar but not

reported due to page limit. One can noticeably observe that the

runtime slightly increases with both walk length ℎ and the number

of walks 𝑘 ; see Figures 2(b) and 2(d). But, this slight increment

of computational overhead elevates ScaLed’s AUC and pushes it

towards and beyond that of SEAL, as shown in Figures 2(a) and 2(c).

Interestingly, when 𝑘 reaches 20, regardless of the ℎ value, the AUC

of ScaLed gets very close to or higher than that of SEAL. We also

observe that AUC increases much faster with the number of walks 𝑘

in comparison to the walk lengthℎ. Forℎ = 2 and𝑘 = 40, ScaLed has

outperformed or matched SEAL in all datasets with almost 3× speed

up. However, for large ℎ (e.g., ℎ = 7), ScaLed has reached just below

SEAL (see Figure 2(a)). This observation confirms that a node’s local

neighborhood hasmore information andwe get diminishing returns

by moving farther away from the node. One practical conclusion

is that for reaching high accuracy and maximum speed up, one is

better off keeping ℎ low but increasing 𝑘 .

5 CONCLUSION AND FUTUREWORKS
Link prediction is an important task for graph-structured data with

applications spanning across multiple domains. Existing state-of-

the-art link prediction methods use subgraph representation learn-

ing (SGRL), which learns the enriched embedding of the enclosing

subgraphs around the pair of nodes. However, SGRL methods are

not scalable to large real-world graphs. We proposed ScaLed to

overcome this scalability shortcoming by exploiting random walks

to sample sparser enclosing subgraphs. The main idea is to preserve

the key structural information of subgraphs with less number of

nodes and edges, thus yielding smaller computational graphs for

GNNs which in turn reduces the runtime and memory consump-

tion. Our extensive experiments demonstrate ScaLed can match the

accuracy measures of the state-of-the-art link prediction while con-

suming order of magnitudes less resources. While larger datasets

(e.g., OGB [15]) are not experimented, ScaLed could offer scalability

by sparsifying their dense ℎ-hop subgraphs. For future work, we

plan to explore how to adaptively choose the length of the walks

and the number of walks depending on the structural positions of

two nodes. Another interesting research direction that could be

explored is to apply graph augmentation techniques to the sampled

subgraphs in ScaLed to further enhance its learning capabilities.
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