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Abstract. Advertising is an important aspect of the Web as many ser-
vices rely on it for continued viability. This paper provides insight into
the effectiveness of using ant-inspired algorithms to solve the problem of
Internet advertising. The paper is motivated by the success of collabora-
tive filtering systems and the success of ant-inspired systems in solving
data mining and complex classification problems. Using the vector space
formalism, a model is proposed that learns to associate ads with pages
with no prior knowledge of users’ interests. The model uses historical
data from users’ click-through patterns in order to improve associations.
A test bed and experimental methodology is described, and the proposed
model evaluated using simulation. The reported results clearly show that
significant improvements in ad association performance are achievable.

Keywords: Ant Colony Optimization, Stigmergy, Pheromone,
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1 Introduction

The proliferation of content on the World Wide Web (WWW) in the past decade
has been, in the most part, economically supported by web advertising. A web
advertisement is a section of a web page that is dedicated not to the content of
the page but to graphics and/or text promoting the product or service of a third
party. A web advertisement usually offers a link to an outside web site that
provides further details regarding the product. The advertising party and the
webmaster who owns the content have a contract which states that the advertiser
will pay the webmaster in exchange for this service. The precise amount offered
is frequently conditional on the success of the ad in compelling the end user to
follow its link for more information. This success is usually measured by click-
through rate (or CTR). A CTR is calculated by dividing the number of users
who clicked on a specific ad by the number of times the ad is delivered.

It is then in the webmaster’s best financial interest to maximize the number
of his users that will, in fact, click-through. One approach to doing this is to
ensure that the ad’s content is matched to the users’ interests, if there is a choice
amongst candidate ads for a web page. It is this problem of choice that motivates
the research reported in this paper. The anonymity of the web creates several
obstacles to effectively resolving this problem of choice. It is not possible to track
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who exactly is coming to your website without browser cookies or some other
invasive technology, and even these are unreliable[1]. Even if it could be known
which user is which, it is not easy to gauge their interests and demographics
outside broad categories like geographic location or browser usage. A webmaster
can only rely on one piece of information from the user when choosing which ad
to match with a served page, and that is the content of the requested page.

Despite the limited amount of information, the webmaster must determine
the users’ interests, or at least which ads they are most likely to click on. Our
main contribution includes the introduction of an ant-based algorithm for the
association of web pages and ads with each other. Utilizing stigmergic [2,3] prin-
ciples, the proposed algorithm builds models that can be quickly updated and
provide recommendations for ad-serving. Moreover, we introduce a simulation
test bed for evaluation of the proposed algorithm. The experiments performed
demonstrate the utility of the proposed algorithm.

The paper consists of 6 further sections. The paper continues by providing im-
portant background information on Ant Colony algorithms in Section 2. Section
3 briefly describes related work in the area of ad association using biologically-
inspired algorithms. Section 4 describes the main contributions of this paper: al-
gorithms for ad association and a test bed that is used to evaluate them. Sections
5 and 6 describe the experimental setup and results respectively. Section 7 sum-
marizes the key messages of the paper and briefly highlights potential future work.

2 Background

The heuristics that an ant colony uses to find food have inspired a computational
metaheuristic that is known as Ant Colony Optimization (ACO) [4]. Starting
with a simple, connected graph with start and destination nodes and every edge
having a pheromone level, τij , each ant steps from the node it is on to another
connected node. The probability of the selection of an edge, eij , to follow at time
t while the ant is located at node i can be calculated using Equation 1. Here, τij
is the amount of pheromone on edge eij and ηij represents the desirability of a
given direction. N(i) contains the neighbors of node i. The parameters α and β
are system parameters.
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τα
ij(t)η

β
ij∑

x∈N(i)

τα
ix(t)ηβ

ix

(1)

This process is repeated with each ant at each node until it reaches the desti-
nation. When the destination is reached an amount of pheromone is deposited
on each edge that is inversely proportional to the total length of the path. To
prevent premature convergence, pheromones are allowed to evaporate over time.
Algorithmically, this means at each iteration, reduce the pheromone level, τij ,
by multiplying it by (1 − ρ) where 0 < ρ < 1 is the evaporation rate. With this
addition, we get the simplest form of ACO [4]. An ACO variant will be used to
recommend Web advertisements and will be detailed in Section 4.1.
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3 Related Work

The algorithms used for ad selection for Web pages are proprietary and remain
largely unreported in the literature. Furthermore, real time ad selection is not
based upon online click-though, which is the motivation for the research reported
in this paper. However, the value of click-through data in this domain is well
understood. See, for example, [5,6].

The problem of offline ad association can be viewed as a data mining prob-
lem if a large body of page requests can be used to induce classifiers. While the
body of literature is large in this general space, Kim et al. [7] have used decision
trees to guide the creation of advertisements for online storefronts and [6] has
optimized search results using support vector machines and click-through data.
We strongly believe that [5] could be used to analyze ads provided to our system
to create the adKeywords vectors shown in the clickThrough algorithm (see Sec-
tion 4) and facilitate the use of non-zero values of β (see Algorithm 3 and Table
1). However, our interest in this paper is the incremental creation of classifiers
online and, more specifically, through a use of biologically-inspired algorithms.
With this latter qualification, prior research is sparse, with AdPalette [8] be-
ing noteworthy. AdPalette uses genetic algorithms to customize advertisements
with usage, relying on crossover and mutation in order to combine promising ad
components on pages.

4 Model

The research reported here was performed in a simulation environment. Figure 1
represents the actual Web environment being simulated. Simulated users with
defined preferences create queries that are used to generate responses that con-
tain a simulated advertisement. In the Web environment shown in Figure 1, users
(e.g., Bob and Alice) interact with one or more web servers (e.g., Web Server
A and B). When Bob asks for a page from Web Server A (indicated by 1 in
the circle) content is returned that contains JavaScript that runs inside of Bob’s
browser. The JavaScript causes the Ad Server to be contacted with keywords
extracted from the content delivered by Web Server A. The ad returned from
the Ad Server is shown by the number 3 in a circle in Figure 1.

The simulation models the interaction that occurs between the web page users
and the web server that processes page requests and matches the advertisements
to the content. Two types of processes run simultaneously: one server script
where most of the actual computing occurs, and a user script that contains
randomly generated users that create and send off page requests to the server
to be processed. Essentially, the user script models a user’s interactions with
various web servers that are connected, in turn, to an ad serving system. The
functions of the user script are to (a) generate users and (b) generate queries
and assess responses. The server script represents the functions of the ad serving
system. The server script is responsible for analyzing the queries that it receives
and making a decision as to which ad to serve.
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Fig. 1. The Ad Placement Scenario

The first function of the user script is to generate up to l users. Each user
entity is meant to simulate one actual user’s preferences and choices. To represent
the variability of users’ interests, each user has a rating for each of a pool of m
keywords that represents how interested the user is in that particular subject.
Note, since we are merely simulating a user, actual keywords are not used but
the preferences, userInterest, recorded as a vector of values [k0, k1, . . . , km−1],
with the value of each ki being between 0 – meaning no interest in the subject i
– and 1 – meaning the highest possible interest in i – are instead. These values
are randomly generated, but are weighted towards the extremes such that there
is a one third chance of the interest level being between 0.75 and 1, and a one
third chance of the interest level being between 0 and 0.25. This is meant to
represent that is more likely that a person has a considerable amount of interest
in a topic or very little interest at all, as opposed to being ambivalent about it.

After the user is created, the user script synthesizes finding a page of interest,
defined by keywords, to the user. Pages are represented by randomly generating
a relevance vector [r0, r1, . . . , rm−1] to represent a possible page, again with
values between 0 and 1 that represent how tightly tied to the subject matter
the content is. In an actual implementation with real Web content, this could
be determined using a vector space model [9] that analyzes the page content
relevant to other pages. Since users do not randomly surf pages, but go to pages
that match their interests, only pages with keywords relevant to the user are of
interest. To simulate this, the angle between the interest vector of the user and
the relevance vector of the page is first determined using Equation 2.

angle(a, b) = arccos
(∑m

i=0 aibi
‖a‖‖b‖

)
(2)

In Equation 2, a and b are vectors of size m with ‖a‖ and ‖b‖ being the lengths of
the vectors a and b respectively. If the angle computed for the page is greater than
some chosen threshold, Rthresh, it is rejected. If the page is rejected, then each of
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Algorithm 1
generatePage(Array userInterest)
page = new Array[m]
for i = 0 to m− 1 do

page[i] = random value from −0.25 to 1.25
if page[i] > 1 then

page[i] = page[i] - 0.25
end if
if page[i] < 0 then

page[i] = page[i] + 0.25
end if

end for
angle = angle between page and userInterest using Equation 2
while angle > Rthresh do

for i = 0 to m− 1 do
20% chance of: page[i] = page[i]+userInterest[i]

2

end for
angle = angle between page and userInterest using Equation 2

end while
return page

the m values has a 20% chance of being averaged with the user’s interest values.
This continues in a loop until the threshold is met. When the generatePage
algorithm (see Algorithm 1) completes it is guaranteed that the generated page
represents the interests of the modeled user; however, there may be content
unrelated to the user’s primary interests.

When the server receives a page from a user, its function is to decide which ad
should be matched with the given page. This is achieved by using the Ad Associ-
ation (A2) algorithm as defined in Section 4.1. Finally, the page will be sent back
to the appropriate user with one of n possible ads attached. The user them evalu-
ates the ad, and determines whether to click it. In a real-life scenario, the person
receiving the ad would judge the ad on his own using preferences and goals, and
choose whether the ad has piqued his interest enough to click it. However, it would
be incredibly hard to simulate a human in this way, so it has been simplified as fol-
lows. Each ad has a number of keywords associated with it, denoted by pm, of the
m possible keywords (pm < m). The more interest a user has in the pm keywords,
the more likely the ad is to be a success. The chance of success is determined on a
logarithmic scale. For example, with 10 keywords associated with an ad, there is an
expected value of 1/100 th chance of a click-through, but varying from 1/10, 000
th chance if the user has no interest at all in the ad’s keywords and guaranteed
success if the user has maximum interest in all keywords. The clickThrough al-
gorithm below indicates how success is computed, with the adKeywords array
containing 0 for completely irrelevant keywords not thought to be useful for the
ad and 1 for keywords that are considered important or completely relevant. The
adKeywords array therefore contains pm entries that are 1 and m − pm entries
that are 0. The normalization value is a constant for the system.
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Algorithm 2
clickThrough(Array adKeywords, Array userInterest)
total = 0
for i = 0 to n− 1 do

if adKeywords[i] == 1 then
total = total + userInterest[i]

end if
end for
return 10(total−pm)∗normalization

Finally, when the success of the ad is determined, information is once again
passed back to the server. The server executes the A2 algorithm and makes
changes based on the page relevance vector, the ad selected and the user’s choice
in regard to the ad. This whole process repeats many times; multiple users each
making a series of page requests.

4.1 Ad Association (A2) Algorithm

In this ant-inspired algorithm, each ad is a given fixed path with m nodes, one
for each of the possible interest keywords along with the adKeywords described
in the previous section. When an ad is served to the user, and is successful, then
it positively reinforces that ad’s path. If it fails, it negatively reinforces the path.

There are 3 parts to the A2 Algorithm: the model, a method for choosing the
best ad considering a page input, and a method for changing the model. The
model, M , is a collection of one vector per ad, a, and each vector has a value for
each of the m interest keywords, i.e., M={v01, v02, . . . , v0m−1, v11, . . . , vn−1m−1}.
Each of these nodes, vij , initially contains a value, τ0, just slightly above zero
representing the amount of pheromone on that part of the path. There are n ads
that can be served. Furthermore, each ad has pm defining keywords, these being
used to decide on whether a click-through occurs or not. The pm keywords are
chosen from the m possible keywords.

As the server receives page requests from users, the A2 algorithm (See
Algorithm 3) executes for the purpose of determining which of the n ads should
be returned. The algorithm proceeds by comparing the page’s relevance vector
with each of the n ads by measuring the angle between the two vectors using
Equation 2. This comparison has two components: first, the feedback gathered
from previous ad associations and second, the comparison between the page and
the ad keywords that are considered relevant. The smaller the angle, the more
similar the ad’s vector is to the relevance vector. The server chooses which ad
to return randomly biased by rank. There is a 1

2r chance that the rth best ad is
returned to the user, thus ensuring a heavy bias towards the best ads; i.e., the
best ad will only be returned half of the time. Once the server sends out the
ad, it waits for information on whether the user clicked the ad. If the ad was
successful, the recordAd algorithm executes. This algorithm ensures that the
vector corresponding to that successful ad, i, is updated so that it increases its
pheromone values for all keywords in i, but increases the page’s more relevant
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Algorithm 3. Ad Association (A2) Algorithm
decideOnAd(Array page)
angles = new Array[n]
for a = 0 to n− 1 do

angleToAd = angle between page and ads[a] using Equation 2
angleToV = angle between page and v[a] using Equation 2
angles[a] = (angleToAdβ)× (angleToV α)

end for
angles = sortInIncreasingOrder(angles)
index = 0
while true do

if index >= n then
return last ad in angles array

else
50% chance of returning ad with angle at index
Otherwise: index = index + 1

end if
end while

recordAd(adNumber, Array page, success)
if success == true then

for i = 0 to m− 1 do
v[adNumber][i] = v[adNumber][i] + page[i] ∗ c

end for
else

for i = 0 to m− 1 do
v[adNumber][i] = v[adNumber][i]− page[i] ∗ k

end for
end if

keywords more, as shown in Equation 3. The relevance vector is r, and c is a
constant that controls how much each success influences the model, 0 < c < 1.
This is equivalent to an ant spreading pheromone on the path to the successful
ad, and making that path more appealing to future ants with similar vectors
that match.

∀j vt+1
ij = vt

ij + r[j] × c (3)

To counter the pheromone values from growing out of control, values are bounded
and the model also adjusts them when an ad fails. In a real-life application,
it is much harder to tell when an ad fails as no message can be sent to the
server saying that the user did not do some action. To circumvent this, it is
assumed that there is a timeout function such that if the ad is not successful in
a given time frame, then it counts as a failure. In the simulation, the user script
just returns a “failure” result. When the server receives a failure, it reduces
all pheromone values for the associated ad, i, but reduces it more for the key-
words most relevant to the page in question. This effect is shown in Equation 4,
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where k is a constant that controls how much each failure influences the model,
0 < k < 1 and k << c. Here, k has the role of evaporation in ACO. τ0 is a very
small number, τ0 << k.

∀j vt+1
ij = vt

ij +max(r[j] × k, τ0) (4)

The purpose of having this pheromone reduction is to prevent one ad from being
overused early on, and becoming dominant before other ads get a chance to demon-
strate relevance. Equations 3 and 4 form the basis of the recordAd algorithm.

5 Experiments

Multiple trials were completed for the A2 algorithm to ensure consistency and
result reproducibility. Three trials are reported in Figure 2 in order to show the
typical variability in simulated performance.

Table 1. Experimental Parameters

Variable Value Variable Value

Rthresh 20 ◦ k 0.01

τ0 10−6 c 0.999

n 20 pm 10

m 100 l 100

normalization 0.4 α 1

Total page requests 500, 000 β 0

The values of c and k were chosen to reflect the relative probabilities of success
and failure respectively; the ratio being approximately 100 to 1 for the scenario
modeled here. The value of β were chosen to reflect an extremely pessimistic
scenario in which nothing was known about the keywords associated with the
advertisements to be presented. In essence, this value of β says that we know
nothing about the contents of the ad, which may be true if the ad is an image
or video or the provider seeks to provide a “black box” ad. That said, this is
an extreme scenario and was chosen in order to test whether the system could
improve based purely upon observed feedback from users.

The value of the normalization coefficient was chosen to ensure that the
average chance of click-through for a page with half of the expected keywords
correct would be 0.01, with the range of probabilities varying from 1 (for all
expected keywords correct) to 0.0001 (for no keywords correct).

The page requests were broken down into 50 blocks of 10, 000 requests each.
For each block, the average success rate as determined by the user was measured.
Also measured was the average expected value of the success rate if the ads were
chosen randomly. This is shown as a horizontal line in Figure 2.
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Fig. 2. Success Rate Variation with Block Number

6 Results and Discussion

The data gathered from testing the A2 Algorithm is promising. As shown in Figure
2 the average chance of ad success will be increased over time. Over the course of
500, 000 page requests, there was a 70% to 80% improvement in efficiency over the
random pairing of ads when viewed across the 3 trials reported here.

Note that, the proposed algorithm does not always return the best match from
its model, but returns one from the top few ads with very high frequency (87.5%
from the top 3 ads). This is important and deliberate. It was found during the
implementation and associated experimentation that without this feature, the
model would converge too quickly on one ad that happened to show promise
early on. Success would breed more recommendations for that ad, which would
only increase the likelihood of it being recommended again later. Adding the
chance that any ad could be picked kept the model from being dominated too
early by any particular ad. Thus, robustness was maintained.

As can be observed in Figure 2, the system continues to learn even after
500, 000 page requests making it likely that 100% improvement over initial sys-
tem performance is achievable. Combining the clear benefits that this algorithm
produces in terms of advertising success and the ease with which it handles large
quantities of data makes it attractive.

7 Conclusions

This paper provides insight into the effectiveness of using an ant-based algo-
rithm to improve Internet advertising. A webmaster could use the proposed A2
algorithm with minor modifications. As shown with an artificial environment,
it should be able to increase ad success, and therefore, advertising revenue by
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over 70% after processing a reasonable amount of traffic for a large website. If it
were used, with refinements made to adjust for real-life variables and efficiencies
added to reflect issues unique to the website, it would be a simple piece of soft-
ware with potential revenue benefits. It is worth looking further into using the
A2 algorithm as a predictor of advertisement effectiveness. We believe that click-
through data mining techniques as described in [5] and [6] (as examples) could
provide a valuable starting point for system ad keyword initialization thereby
allowing for better-than-random initial system performance. Furthermore, larger
data sets should be tested beyond the small problem space that is used here.

Beyond this, the next stage would be to implement the algorithm on a real web
server. It would run continuously and intercept real incoming customer data and
produce actual ads, using vector-space models to convert the requested pages
into the vectors used by the algorithm. It could be further refined to take into
account that some advertisements may pay more to be shown, that some ads
have different sizes and page positioning from others and that more than one ad
is often shown on a site at once.
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